Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Raul I. Cabrera x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

Containerized crape myrtle (Lagerstroemia indica L. × Lagerstroemia fauriei Koehne `Tonto') plants were grown for 9 months under various nitrogen fertility regimes, and then transplanted to a sandy loam soil with minimal management to evaluate their landscape establishment and growth performance. During the nursery phase plants were irrigated, except over an overwintering period, with complete nutrient solutions differing in applied N concentration, ranging from 15 to 300 mg·L-1. By 16 weeks after transplanting (WAT) into the landscape soil, plant biomass was significantly higher in the plants that had been grown with higher N supplies and had been among the smallest at transplant. Such plant growth response was linearly and positively correlated to plant N status at transplant. Plant shoot to root ratio and tissue N, Ca, S, and Fe concentrations, which had been significantly affected by the N fertilization regime in the nursery, equalized over time after transplant, with no significant differences observed among treatments by 16 WAT. Flowering response in the landscape was delayed in plants originally grown with the higher N supplies. Plant survival and establishment per se were not affected by treatments; no plants were lost, and aside from the differences in size and flower timing, all plants were considered aesthetically similar.

Free access

Genetic diversity was estimated for 51 Lagerstroemia indica L. cultivars, five Lagerstroemia fauriei Koehne cultivars, and 37 interspecific hybrids using 78 simple sequence repeat (SSR) markers. SSR loci were highly variable among the cultivars, detecting an average of 6.6 alleles (amplicons) per locus. Each locus detected 13.6 genotypes on average. Cluster analysis identified three main groups that consisted of individual cultivars from L. indica, L. fauriei, and their interspecific hybrids. However, only 18.1% of the overall variation was the result of differences between these groups, which may be attributable to pedigree-based breeding strategies that use current cultivars as parents for future selections. Clustering within each group generally reflected breeding pedigrees but was not supported by bootstrap replicates. Low statistical support was likely the result of low genetic diversity estimates, which indicated that only 25.5% of the total allele size variation was attributable to differences between the species L. indica and L. fauriei. Most allele size variation, or 74.5%, was common to L. indica and L. fauriei. Thus, introgression of other Lagestroemia species such as Lagestroemia limii Merr. (L. chekiangensis Cheng), Lagestroemia speciosa (L.) Pers., and Lagestroemia subcostata Koehne may significantly expand crapemyrtle breeding programs. This study verified relationships between existing cultivars and identified potentially untapped sources of germplasm.

Free access