Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Quan Li x
  • All content x
Clear All Modify Search
Open access

Guirong Li, Ran Quan, Chaohui Yan, Xiaojin Hou, and Huiling Hu

Grape (Vitis vinifera) is among the world’s most important fruit crops and is a commonly used woody plant for genomics and post-genomics research. NAC transcription factors play central roles in plant growth and development, floral organ morphogenesis, and responses to biological stress. It is therefore important to identify key transcription factors from grape and clarify their mechanisms of action to generate genetic resources for grape molecular improvement. Our research group previously cloned a NAC transcription factor from V. vinifera ‘Yatomi Rosa’ [drought and leaf roll gene 1 (DRL1)] and demonstrated that it caused dwarfing of tobacco (Nicotiana benthamiana) plants when overexpressed. In the present work, we demonstrate that overexpression of DRL1 in transgenic tobacco delays flowering time and markedly reduces pollen viability. Furthermore, crosses between male DRL1 transgenic tobacco and female wild-type tobacco exhibit substantially lower fruit set, fruit and seed weights, fruit and seed shape indices, and seed germination rates than selfed wild-type plants or crosses with a transgenic female parent. DLR1 overexpression strongly influences flowering time and reproduction in transgenic tobacco, primarily through its effects on pollen development. These results provide a foundation for further functional characterization of DLR1 in grape.

Open access

Huimin Zhang, Hongguang Yan, Cuixiang Lu, Hui Lin, and Quan Li

Solid-state 1H-NMR and 13C-NMR spectroscopy were used to investigate the chemical components of sweet cherry tree leaves under rain-shelter cultivation (RS) and open-field cultivation (CK). The 1H-NMR spectral chemical shifts of RS and CK showed differences in height and integral value. The δ 1–3, δ 3–4, δ 4–6, and δ 6–10 regions were attributed to the hydrogen signals of aliphatic compounds, unsaturated carbohydrate compounds, and aromatic compounds, respectively. Among the four regions, the percentage of signal strength and the integral value of hydrogen signals of RS and CK were 34.25% and 28.34%, 11.64% and 12.26%, 26.71% and 31.06%, 27.4% and 28.34%, respectively. The 13C-NMR results showed that the CK sample had slightly stronger spectral lines and contained slightly more carbon atoms than the RS sample. Sweet cherry leaves contain aromatic and carboxyl carbons, mainly from carboxylic acids, esters, and amides. The alkyl carbons exhibited the lowest ratio, whereas the alkyl and alkoxy carbons were mainly derived from carbohydrates (cellulose, polysaccharides).

Free access

Bin Cai, Cheng-Hui Li, Ai-Sheng Xiong, Ri-He Peng, Jun Zhou, Feng Gao, Zhen Zhang, and Quan-Hong Yao

The database of grape transcription factors (DGTF) is a plant transcription factor (TF) database comprehensively collecting and annotating grape (Vitis L.) TF. The DGTF contains 1423 putative grape TF in 57 families. These TF were identified from the predicted wine grape (Vitis vinifera L.) proteins from the grape genome sequencing project by means of a domain search. The DGTF provides detailed annotations for individual members of each TF family, including sequence feature, domain architecture, expression information, and orthologs in other plants. Cross-links to other public databases make its annotations more extensive. In addition, some other transcriptional regulators were also included in the DGTF. It contains 202 transcriptional regulators in 10 families.

Open access

Quan Liu, Yan Lan, Feng Tan, Yunbiao Tu, Yingying Sun, Gajue Yougu, Zeshen Yang, Chunbang Ding, and Tian Li

Water is essential for crops and plays a vital role in olive (Olea europaea) growth. Three irrigation treatments, rain-fed (CK), flood irrigation (FI), and drip irrigation (DI), were applied from late November to late May in a 2-year study (Nov. 2015 to Oct. 2017) on two olive cultivars, Coratina and Koroneiki. Shoot growth, flower and fruit characteristics, and olive and oil yields were measured. Compared with CK, FI had significantly higher values of vegetative growth, olive and oil yields, moisture content, and oil content. Although the fruit weight, pulp rate, and oil content with DI were the lowest, our results support that DI had the greatest positive effects on olive vegetative growth, flowers, fruit set, and olive and oil yields. It is suggested that DI in winter and spring is the best irrigation strategy for olive productivity in southwest China.