Search Results
Information on the history, legislative background, and current five levels (national, provincial, county, municipal, and township level) of the agricultural extension system in China are presented herein. In addition to the five levels, there are also six administrative agencies involved: Ministry of Agriculture, State Forestry Administration, Ministry of Science and Technology, Ministry of Education, National Agriculture Leadership Working Group, and National Development and Reform Commission. An example (Zhongfang Township, City of Luoyuan, Fuzhou County, Fujian Province) is given to illustrate the intricate network of the agricultural extension system. Major problems of the Chinese extension system include a complex and inefficient extension network, disconnection between the extension service and stakeholders’ needs, and a “two-boss” dilemma for most extension agencies. However, some current success stories in Chinese agricultural extension may be applicable or provide useful tips to other countries including the United States.
The DNA binding with one finger (Dof), as an important transcription factor, plays an important role in growth and development, primary and secondary metabolism, stress resistance, and plant hormone signal transduction. However, the identification and analysis of the Dof transcription factor family in Rosa is rarely reported. In this study, 28 Rosa chinensis Dof (RcDof) members were identified, which were located on seven chromosomes. The RcDofs were divided into 12 subfamilies according to evolutionary analysis. Through motif, gene structure, and cis-acting element analyses of the 12 subfamilies, the functions of RcDofs were analyzed and predicted. Furthermore, the Dof members in R. chinensis ‘Old Blush’ and another three species (Arabidopsis thaliana, Oryza sativa, and Zea mays) were systematically analyzed. Twelve subfamilies were found in these four species and the motifs and gene structures of Dof members in each subfamily were similar, which further proves that the RcDofs analysis is accurate. Through an intra- and interspecies collinearity analysis, it was found that the collinearity between A. thaliana and R. chinensis is closer in comparison. Tissue expression analysis of RcDofs was by quantitative reverse-transcription polymerase chain reaction (PCR). Quantitative real-time PCR analysis showed expressions of the RcDofs are tissue specific. The RcDofs had higher expression in leaves, roots, and flowers than other tissues. Taken together, this study provides valuable information for future research on functional exploration of RcDof genes and molecular breeding in Rosa.