Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Phillip D. Griffiths x
- Journal of the American Society for Horticultural Science x
The genetic basis for heat tolerance during reproductive development in snap bean was investigated in a heat-tolerant × heat-sensitive common bean cross. Parental, F1, F2, and backcross generations of a cross between the heat-tolerant snap bean breeding line `Cornell 503' and the heat-sensitive wax bean cultivar Majestic were grown in a high-temperature controlled environment (32 °C day/28 °C night), initiated prior to anthesis and continued through plant senescence. During flowering, individual plants of all generations were visually rated and scored for extent of abscission of reproductive organs. The distribution of abscission scores in segregating generations (F2 and backcrosses) indicated that a high rate of abscission in response to heat stress was controlled by a single recessive gene from `Majestic'. Abscission of reproductive organs is the primary determinant of yield under heat stress in many annual grain legumes; this is the first known report of single gene control of this reaction in common bean or similar legumes. Generation means analysis indicated that genetic variation among generations for pod number under heat stress was best explained by a six-parameter model that includes nonallelic interaction terms, perhaps the result of the hypothetical abscission gene interacting with other genes for pod number in the populations. A simple additive/dominance model accounted for genetic variance for seeds per pod. Dominance [h] and epistatic dominance × dominance [l] genetic parameters for yield components under high temperatures were the largest in magnitude. Results suggest `Cornell 503' can improve heat tolerance in sensitive cultivars, and heat tolerance in common bean may be influenced by major genes.
Common bean rust disease (caused by Uromyces appendiculatus) and high temperatures (heat stress) limit snap bean (Phaseolus vulgaris) production in many tropical and temperate regions. We have developed snap bean lines combining broad-spectrum rust resistance with heat tolerance for tropical agroecosystems. Eight breeding populations were developed by hybridizing BelJersey-RR-15 and BelFla-RR-1 (each possessing the Ur-4 and Ur-11 rust resistance genes) and the heat-tolerant snap bean breeding lines HT601, HT603, HT608, and HT611. F2–F4 generations of the populations were evaluated under greenhouse conditions and selected for heat tolerance while simultaneously selecting for the rust resistance genes Ur-4 and Ur-11. Three heat-tolerant F5 lines, which were homozygous for Ur-4 and Ur-11 genes, were selected together with a rust-resistant but heat-sensitive control. These and 12 cultivars adapted to different geographical regions were evaluated for their reaction to rust and yield at six contrasting field sites in eastern Africa and their response to high temperature verified in Puerto Rico. Rust incidence and severity was high at three of the trial sites in eastern Africa. Two of the 12 cultivars were resistant to rust at most of these sites, and three of the four breeding lines were resistant at all sites. The Ur-11 gene effectively conferred rust resistance at all sites. Yield in Puerto Rico was strongly correlated (R 2 = 0.71, P < 0.001) with that of the hottest site in eastern Africa, highlighting the similarity in genotypic response to high temperatures at the two distinct sites. The newly developed rust-resistant and heat-tolerant breeding lines showed stable yield at the eastern Africa sites with contrasting mean temperatures compared with the cultivars presently grown in the region. Two of these lines, HT1 and HT2, were confirmed to be homozygous for Ur-4 and Ur-11 and with high heat tolerance under both greenhouse and field environments. This research validates the effectiveness of targeted rust resistance gene combinations for tropical environments and the effective selection of high temperature tolerance traits correlating across multiple environments. The breeding lines HT1 and HT2 developed in this research could be used to improve snap beans for the tropics and other environments with similar constraints.