Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Peter A. Jolliffe x
- HortScience x
Effective gas flow between plant materials and their surrounding atmosphere is necessary to enable controlled atmospheres to act on stored produce and maintain produce quality. Gas flow can be motivated in two ways: by component gas concentration (i.e. partial pressure) gradients and by total as pressure gradients. Varying the total gas pressure about stored plant material should cause gas flow which supplements that induced by concentration gradients alone. Novel measurement techniques were developed to explore the effects of varying atmospheric pressure and gas composition on gas transfer rates. In apple fruit, gas transfer rate undergoes a several-fold increase with small pressure fluctuations. There is a direct increase in gas transfer rate as the amplitude of pressure variation increases, and optimum periods of oscillation fall in the range of 20 to 60 seconds. Apples, onions, and other commodities with large internal gas volume and intermediate peripheral resistance to bulk gas flow, seem to be most responsive to total pressure variation.
Abstract
Previous research showed a relationship between viability and electrolyte leakage; here, we develop an index of viability based on electrolyte leakage from sample populations of seeds soaked in deionized distilled water. Conductivity of leachates from individual seeds was determined for 10 lots of lettuce (Lactuca sativa L.), each germinating at 99%. Conductivity data for two lots of soybean (Glycine max L.) seeds germinating at 100% and 74%, respectively, were obtained from literature. Cumulative frequency distributions (CFD) with a class interval of one µA, were fitted with a natural logarithmic form of the Richards function, which requires no arbitrary starting values. The procedure provided an effective estimation of slopes [(dCF/dµA)MAX] of hypothetical lines tangent to inflection points of the respective sigmoidal CFD curves. We suggest that this maximum slope, or internal slope can be used as a seed viability index. The index is unaffected by outlier µA readings and reflects the shape of the CFD. It is also a measure of seed-to-seed variability in leachate conductivity. The se of the 10 internal slopes derived from the 10 lettuce seed lots was 3.8. The viability index is sensitive, since nearly a four-fold difference in internal slope was found for the two soybean seed lots. The greater the internal slope, the less the variation among individual seed conductivities and the higher the seed quality.