Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Penelope Perkins-Veazie x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

Abstract

Priming has been used to circumvent thermodormancy in lettuce seeds, but results have sometimes varied according to cultivar and seed lot. Two- and 3-year-old seeds of ‘Montello’ and ‘Green Lakes’ lettuce (Lactuca sativa L.) were aged at 41°C and 100% RH for 2, 3, or 5 days, dried, then primed for 20 hours at 15° in aerated 1% K3PO4 and redried at 7° and 45% RH. Germination at 25° was not affected by 2 and 3 days of accelerated aging or by priming of 2- and 3-year-old seeds. After 5 days of accelerated aging, germination decreased for both primed and nonprimed seeds. No germination occurred at 35° unless the seeds were primed. Natural aging led to a reduction in germination of primed ‘Green Lakes’ seeds at 35°. All accelerated aging treatments led to reduced germination of the primed seeds at 35°, regardless of cultivar. After prolonged accelerated aging (3 or 5 days), priming did not overcome thermodormancy. Accelerated aging greatly reduced germination rate at 25°. Priming for longer durations of 35 and 40 hours, after 3 days of accelerated aging, increased germination rates slightly at 25° but did not improve germination patterns at 35°. Only lettuce seeds of the highest quality could be effectively primed to overcome thermodormancy.

Open Access

Phosphorus (P) deficiency commonly results in the development of red-to-purple coloration in plant foliage, typically attributed to anthocyanins. Betacyanins are a red pigment found in some plant species that do not produce anthocyanins, including Alternanthera sp. This study was conducted to investigate the effects of P nutrition on the betacyanin concentration and subsequent foliar coloration of ‘Purple Prince’, ‘Brazilian Red Hots’, and ‘Little Ruby’ alternanthera (Alternanthera brasiliana). The purpose of this study was to determine whether P fertilization management could enhance the coloration and aesthetic appeal of alternanthera. Custom fertilizers provided P concentrations of 0, 2.5, 5, 10, and 20 mg·L−1 P. One-half of the plants from each P concentration were restricted to 0 mg·L−1 P 1 month after transplant to determine whether adequate size could be attained before withholding P. Differences in P response were observed among cultivars for hue, betacyanin content, and plant size. Concentrations ≤5 mg·L−1 P resulted in plants that were more compact in terms of plant height and diameter, had deeper red foliage coloration, and greater foliar betacyanins compared with plants grown with greater P concentrations. Plants initially grown with 5 or 10 mg·L−1 P attained marketable size before P restriction and developed more red pigmentation compared with plants grown with P for the remaining duration of the study. Regression analysis demonstrated height was maximized with 3 to 8 mg·L−1 P, diameter with 4.1 to 8.4 mg·L−1 P, and branching with 10.0 mg·L−1 P. Foliar betacyanin concentrations were greatest in plants grown without P, reaching 269 mg/100 g fresh weight, whereas plants grown with 10 or 20 mg·L−1 P were 95% less (averaged ≈13 mg/100 g fresh weight). This study demonstrates that P restriction can benefit the aesthetic appeal of alternanthera and provides the first confirmation that P nutrition is associated with betacyanin accumulation.

Free access

Abstract

Seed treatments and soil covers were used to assess stand establishment and uniformity of direct-seeded cabbage (Brassica oleracea L. var capitata) under high and low soil temperatures. Generally, primed seeds did not result in increased or more uniform seedling emergence compared to untreated seeds. Germinated seeds sown with a magnesium silicate gel (Laponite) or a starch-acrylamide-acrylate polymer gel (Liquagel) resulted in incomplete stands under heat stress, and stands for all plantings were generally lower when cabbage seeds were sown in a gel than when sown without a gel. Peat-vermiculite (Plug-mix) and calcined clay (GrowSorb) seed covers improved stands regardless of seed treatment when average soil temperatures were ≥30°C. Under normal (25°) to cooler soil conditions stands were not improved by seed treatment or seed cover.

Open Access

High tunnels have been widely adopted for red raspberry (Rubus idaeus) production in the United States to extend the harvest season and increase yields. In this study, effects of high tunnel production on contents of plant secondary metabolites (anthocyanins, carotenoids, tocopherols, and ellagitannins) in red raspberry fruit were determined for three fall-fruiting cultivars (Autumn Britten, Caroline, and Nantahala) grown at three locations in North Carolina under field and high tunnel cultivation systems. Cultivar was the primary contributing factor to variation in phytochemicals, with minor effects of location and production system. The anthocyanin cyanidin-3-glucoside and the carotenoids α-carotene, β-carotene, lutein, and zeaxanthin were higher in fruit produced in field compared with tunnel cultivation (P < 0.01). Accumulation of total anthocyanins and tocopherols in fruit were unaffected by high tunnel cultivation in comparison with traditional field cultivation. Carotenoid content varied by genotype and production system. ‘Autumn Britten’ and ‘Caroline’ showed no difference, but were higher than ‘Nantahala’ for α-carotene, β-carotene, 9-cis-β-carotene, and lutein + zeaxanthin (P < 0.0001). Phytochemical differences among field and tunnel produced fruit have important implications for breeding with increased nutritional value in mind, and also the understanding of the relationships of plant pigments to light and temperature.

Free access

The objective of this study was to examine the relative impact of genetics and environment on phenolic and carotenoid profiles in peach (Prunus persica) germplasm. Fully mature, (“ready-to-eat” stage) firm fruit of peach cultivars China Pearl, Contender, and Carolina Gold were collected from established trees at two North Carolina locations in 2009 and 2010. Advanced breeding selections NC Yellow and NC 97-48 were collected from a single location in both years. Using tandem extractions and chromatography analyses, 10 carotenoids and 24 phenolic compounds were quantified separately in the peel and flesh. Statistically significant differences were noted among peach cultivars and advanced selections for β-carotene, cyanidin-3-glucoside, cyanidin-3-rutinoside, cholorogenic acid, quercetin-3-glucoside, and individual procyanidins. Peel anthocyanin (ANC) concentration ranged from 183 mg/100 g in ‘Contender’ to non-detectable levels in NC97-48 and NC Yellow. ‘China Pearl’ and ‘Carolina Gold’ produced ANC levels approximately half of ‘Contender’. Chlorogenic acid concentration also fit a discrete pattern of accumulation but was not related to the accumulation of ANC. ‘China Pearl’, NC 97-48, and NC Yellow contained the highest levels of chlorogenic acid (105 to 136 mg/100 g), ‘Carolina Gold’ contained the lowest (52 mg/100 g), and ‘Contender’ represented an intermediate phenotype (70 mg/100 g). Statistically significant genetic variation was found for almost all compounds identified, whereas location and year effects tended to be compound-specific. For chlorogenic acid, 28% of the phenotypic variance was explained by location (year = nonsignificant), whereas 40% of the phenotypic variation of ANC was explained by differences in years (location = nonsignificant). Analyzing fruit from the same environment over 2 years or from two locations in the same year would not have adequately accounted for the variation associated with environment. The detailed phytochemical profile of peach reported here demonstrates the importance of multiyear, multilocation analysis in revealing accurate measures of phytochemical genetic variation and provides a comprehensive baseline analysis of phytochemicals in commonly grown peach cultivars that can be used to evaluate novel germplasm.

Free access