Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Paul G. Thompson x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

Low-density randomly amplified polymorphic DNA (RAPD) markers of sweetpotato [Ipomoea batatus (L.) Lam.; 2n = 6x = 90] were constructed from 76 pseudotestcross progenies obtained from `Vardaman' × `Regal'. Of 460 primers, 84 generating 196 well-resolved repeatable markers were selected for genetic analysis. `Vardaman' and `Regal' testcross progenies were analyzed for segregation and linkages of RAPD markers. Type of polyploidy, autopolyploidy, or allopolyploidy is uncertain in sweetpotato and was examined in this study using the ratio of nonsimplex to simplex RAPD markers and the ratio of simplex RAPD marker pairs linked in repulsion to coupling. Both measures indicated autopolyploidy. Low-density RAPD linkage maps of `Vardaman' and `Regal' were constructed from simplex RAPD marker linkage analysis. Duplex and triplex markers were then mapped manually into the simplex marker map. Homologous linkage groups were identified using nonsimplex RAPD markers and three homologous groups were found in each of the parent maps. Use of nonsimplex markers increased mapping efficiency. The `Vardaman' map had a predicted coverage of 10.5% at a 25-cM interval of the genome size of 5024 cM. In `Regal', genome coverage was estimated to be 5.6% at a 25-cM interval of the genome size of 6560 cM. Therefore, average chromosome length was ≈56 to 73 cM.

Free access

RAPD marker analyses were completed on parents and progeny of two sweetpotato [Ipomoea batatas (L.) Lam.] crosses to determine the feasibility of genetic linkage map construction. A total of 100 primers was tested and 96 produced amplified genomic DNA fragments. The average number of polymorphisms per primer was 0.69. A total of 134 polyphorphic markers was observed and 74 (60%) segregated 1 band present : 1 band absent as needed for use in genetic linkage mapping of polyploids. The 60% of RAPD markers that segregated 1:1 shows that genetic linkage mapping of the hexaploid sweetpotato by RAPD marker analysis is feasible. Linkage was determined for all markers that segregated 1:1 and five pairs of linked markers were found. These were the first linked molecular markers found in sweetpotato and they show that construction of a genetic linkage map is feasible. A genetic linkage map will be a valuable tool to assist in genetic improvements.

Free access