Search Results

You are looking at 1 - 8 of 8 items for :

  • Author or Editor: Paul Dean x
  • HortScience x
Clear All Modify Search

More peach [Prunus persica (L.) Batsch.] trees survived when planted in killed bahiagrass (Paspalum notatum Flugge `Paraguayan-22') sod growing between previous orchard tree rows (98%) than when planted in previous tree sites (81%) or in previous tree rows, but halfway between previous tree sites (79%). The previous orchard was removed Nov. 1986, and new trees were planted Feb. 1987. Surviving trees in the killed sod grew better than trees at the other two sites. Tilling the sites before planting did not affect nematode populations or tree survival and growth. Soaking the tree roots in a fenamiphos solution (1 g·liter-1) for 20 minutes before planting resulted in 79% tree survival vs. 93% survival for the nonsoaked trees. Fenamiphos sprayed under the trees at a rate of 11.2 kg·ha-1 during the spring and fall of the planting year did not change nematode populations, tree survival, or tree growth. The fenamiphos sprays reduced the increase in trunk cross-sectional area by 3 cm2 for trees in the sod. Other than leaf Zn concentration, which was low, concentrations of the elements were within the sufficiency range for Georgia for all treatments. Trees planted in the killed sod had an increased leaf K concentration and decreased leaf Mg concentration when compared with trees planted in the rows. Chemical name used: ethyl 3-methyl-4-(methylthio)phenyl (1-methylethyl)phosphoramidate (fenamiphos).

Free access

A soil material high in metal oxides collected from the Bw horizon of a Hemcross soil in the state of Oregon was charged with phosphate, added to a soilless root medium, and evaluated for its potential to supply phosphate at a low, stable concentration during 14 weeks of tomato cropping (three successive crops). Three rates of phosphate were charged on the soil material, 0, 2.2, and 6.5 m P/g soil material and the soil material was incorporated into a 3 peatmoss: 1 perlite (v:v) medium at 5 % (40 g) and 10 % (80 g) of the volume of a 13.6-cm pot (1.0 L of medium). Uncharged soil material incorporated into soilless root medium at 5% and 10% reduced soil solution phosphate to deficient levels for 2 and 7 weeks, respectively. Phosphate was adequately supplied for 7, 10, 12, and more than 14 weeks in the 2.2P-5%, 2.2P-10%, 6.5P-5%, and 6.5P-10% treatment, respectively, as determined by symptoms of P deficiency. Phosphate and K levels in soil solution were highest at the beginning of crop 1 and tended to decline thereafter. Incorporation of soil material into soilless root medium improved pH stability whether it was charged with phosphate or not. The loss of the phosphate-charged soil material was negligible, 0.3% for the 6.5P-5% treatment and 1.2% for the 6.5P-10% treatment. The minimum critical concentration of soil solution phosphate for tomato in a 3 peatmoss: 1 perlite (v:v) medium as determined by the pour-through extraction procedure was found to be 0.3 mg·L–1 or slightly less.

Free access

Soilless root media retain very little phosphate. This characteristic necessitates continual application of phosphate, which leads to excessive application and leaching. The phosphate desorption characteristics of synthetic hematite (a-Fe2O3), goethite (a-FeOOH), allophane (Si3Al4O12 *nH2O), and a commercial alumina (Al2O3), previously determined for their maximum adsorption capacities, were evaluated to determine their potential for providing a low, constant soil solution phosphate supply with low phosphate leaching from soilless root media. The desorption isotherms of the clay minerals were obtained by introducing 10 mM KCl solution at 0.2 ml/min flow rate into a stirred flow reaction chamber loaded with clay adsorbed with phosphate at maximum adsorption capacity. The suspension in the reaction chamber was held at pH 6.4 during desorption. Effluent solutions were collected for phosphorus analysis until the equilibrium concentration of phosphorus in solution reached 0.05 mg•L-1. Adsorbed phosphorus at 0.05 mg•L-1 equilibrium concentration in solution was in the order allophane (19 mg•g-1) > alumina™ goethite (8 mg•g-1) > hematite (1.3 mg•g-1). The equilibrium concentration of phosphorus in solution over time showed that allophane releases phosphate for a longer time than the other clay minerals at a desirable soil solution concentration for plants, less than 5 mg•L-1. Among the clay minerals tested, allophane showed the most favorable potential to supply phosphate to plants in soilless root media.

Free access

Abstract

Forcing azalea (Rhododendron sp. cvs. Redwing, Mission Bells and Gloria were subjected to sufficient and low levels of N, K, and Ca, and the difference in concentration of these nutrients was measured and termed “differential”. Immature, recently mature, and old leaves were sampled periodically from current shoots during development. Ca differential was not related to sample position. N differential was exhibited in a similar manner but was best expressed in older leaf tissue during late growth. The magnitude of the K differential was related to both sample position and sample date; the largest expression occurred in young leaf tissue during early growth and on older leaf tissue during late shoot development. The best single sample position for foliar analysis of these nutrients was the most recently mature leaves on current shoots.

Open Access

Abstract

Pesticides were applied to ‘Rio Grande’ peach [Prunus persica (L.) Batsch] trees at recommended rates from bloom to harvest using three sprinkler configurations on a center pivot and an air-blast sprayer. Fruit scab infection rates with a patented sprinkler configuration (Piggy-back) that has spray nozzles mounted on a lower truss rod of the center pivot were equivalent on 12 and 23 June 1987 to those with the air-blast sprayer. Scab infection rates for standard impact-nozzles and for a deflector nozzle configuration were equivalent to each other, and tended to be lower than the infection rate for the unsprayed fruit, but higher than the rate for the air-blast sprayer or piggy-back configuration. Brown rot, bacterial spot, and insect catfacing (the other fruit defects observed at harvest) were independent of the method of pesticide application. It may be feasible to chemigate peach orchards with center-pivot irrigation systems.

Open Access

Agricultural limestone is classified based on particle-size distribution, a key factor influencing neutralization capacity. This property is an effective basis for liming recommendations for agronomic purposes which allow for gradual rise in soil pH and residual neutralization for three years. Inconsistencies are prevalent when agricultural limestone is used for horticultural applications which require rapid attainment of target pH and residual neutralization for only four months. Variations in pH among batches of substrate produced with the same limestone rate and pH drift from the same initial pH during crop production infer that factors other than particle diameter also influence limestone neutralization capacity. In this study the relationship between specific surface and diameter of limestone particles was examined. Limestones obtained from twenty North American quarries were wet-sieved into eight particle diameter fractions from 600 to <38 μm (passing 30 through 400-mesh screens). Specific surface (m2/g) of particles was measured in three replications for each fraction following the BET theory that dinitrogen gas (N2) condenses in a continuous mono-molecular layer on all particle surfaces. At each particle diameter fraction, specific surface varied significantly (five-fold differences) among quarries. Large specific surface may indicate many reactive interfaces, hence high neutralization capacity. In containerized production, typical to horticulture, preponderance of root over substrate mass and short crop duration dictate narrower characterization of limestone than is currently used. Specific surface may describe limestone neutralization capacity more finely than does particle diameter.

Free access

Two experiments were completed to determine whether the form and concentration of iron (Fe) affected Fe toxicity in the Fe-efficient species Pelargonium ×hortorum `Ringo Deep Scarlet' L.H. Bail. grown at a horticulturally low substrate pH of 4.1 to 4.9 or Fe deficiency in the Fe-inefficient species Calibrachoa ×hybrida `Trailing White' Cerv. grown at a horticulturally high substrate pH of 6.3 to 6.9. Ferric ethylenediaminedi(o-hydroxyphenylacetic) acid (Fe-EDDHA), ferric ethylenediamine tetraacetic acid (Fe-EDTA), and ferrous sulfate heptahydrate (FeSO4·7H2O) were applied at 0.0, 0.5, 1.0, 2.0, or 4.0 mg ·L–1 Fe in the nutrient solution. Pelargonium showed micronutrient toxicity symptoms with all treatments, including the zero Fe control. Contaminant sources of Fe and Mn were found in the peat/perlite medium, fungicide, and lime, which probably contributed to widespread toxicity in Pelargonium. Calibrachoa receiving 0 mg Fe/L exhibited severe Fe deficiency symptoms. Calibrachoa grown with Fe-EDDHA resulted in vigorous growth and dark green foliage, with no difference from 1 to 4 mg·L–1 Fe. Using Fe-EDTA, 4 mg Fe/L was required for acceptable growth of Calibrachoa, and all plants grown with FeSO4 were stunted and chlorotic. Use of Fe-EDDHA in water-soluble fertilizer may increase the upper acceptable limit for media pH in Fe-inefficient species. However, iron and Mn present as contaminants in peat, irrigation water, or other sources can be highly soluble at low pH. Therefore, it is important to maintain a pH above 6 for Fe-efficient species regardless of applied Fe form or concentration, in order to avoid the potential for micronutrient toxicity.

Free access

Although many factors that influence substrate pH have been quantified, the effect from fertilizers continues to be elusive. A multifactorial experiment was conducted to test macronutrient effects using a rarely used statistical method known as the central composite design. Five nutrient factors, including nitrogen (N) carrier ratio (NH4 + vs. NO3 ) and concentrations of phosphorus (P) (as H2PO4 ), potassium (K), combined calcium (Ca) and magnesium (Mg), and sulfur (S), were varied at five levels each encompassing the proportionate range of these nutrients in commercial greenhouse fertilizers. Although a typical factorial experiment would have resulted in 55 = 3125 treatments, the central composite design reduced the number to 30 fertilizer treatments. An experiment was conducted twice in which ‘Evolution White’ mealy-cup sage (Salvia farinacea Benth.) was grown in 14-cm-diameter pots (1.29 L) in a 3 peat:1 perlite (v/v) substrate amended with non-residual powdered calcium carbonate to raise the substrate pH to ≈5.6 to 5.8. Harvests occurred after 3 and 6 weeks of growth. A statistical model described substrate pH over time with significant effects including four main effects of N carrier ratio, P, K, and combined Ca and Mg; three squared terms of N carrier ratio, P, and K; and seven interaction effects. The resulting model was used to calculate substrate pH levels between 25 and 45 days after planting, and it showed that N carrier had the greatest impact on substrate pH.

Free access