Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Paul A. Wiersma x
  • HortScience x
Clear All Modify Search

Expansins are a class of proteins that stimulate the extension of plant cell walls. Expansins have been found in nearly all growing plant tissues, such as hycopotyls, young seedlings, fibers, internodes, flower petals, and ripening fruits. We isolated two full-length expansin cDNA clones, Pruav-Exp1 and Pruav-Exp2, from sweet cherry (Prunus avium L.) fruit. Pruav-Exp1 has 1048 nucleotides encoding 254 amino acids, while Pruav-Exp2 has 1339 nucleotides encoding 250 amino acids. Deduced amino acid sequences of sweet cherry Pruav-Exp1 and Pruav-Exp2 share 72% identity. A Blast search of the GenBank database with the deduced amino acid sequences of Pruav-Exp1 and Pruav-Exp2 indicated a high sequence identity with other plant expansin genes. Interestingly, Pruav-Exp1 shares 99% identity of amino acid sequence with that of apricot expansin Pav-Exp1. Fragments from the 3' ends of Pruav-Exp1 and Pruav-Exp2 were cloned to generate gene-specific probes. These probes were used to study expansin gene expression in different tissues and during fruit development. Northern blot analysis showed different mRNA expression patterns for each gene. The mRNA of Pruav-Exp1 was expressed at the pink and ripe stages, but not at the early green and yellow stages of fruit development. The mRNA of Pruav-Exp2 was present earlier, from a low level in yellow expanding fruit, increasing to a high level at the pink stage and remaining at this level through the ripe stage. Both mRNAs were also expressed at a low level in flower, but not present in other tissues such as roots, leaves and peduncles. Our study indicates an expansin gene family is present in sweet cherry and suggests that two expansin genes may have different roles during fruit development and ripening.

Free access

Apple fruits (Malus domestica Borkh. cv. Braeburn) harvested from two orchards (A and B) on the same day were stored in air or pretreated in air for 0, 2 (2dCA) or 4 weeks (4dCA) before moving into controlled atmosphere (CA) storage with 1.5% O2 + 5% CO2. During storage at 1 °C for 9 weeks in air and/or CA, changes of pyruvate decarboxylase (PDC) activity, alcohol dehydrogenase (ADH) activity, acetaldehyde (AA) and ethanol (EtOH) concentrations in flesh tissue were assayed in addition to the incidence of Braeburn browning disorder (BBD). Immediate introduction to CA conditions induced the development of BBD with the highest incidence 62.2%, however delaying application of CA for 2 and 4 weeks reduced the incidence of BBD to 38.5% and 27.0%. The development of disorder in grower B was less than in grower A. 2dCA and 4dCA treatments did not influence PDC activity compared with treatment of CA. However, ADH activity and the accumulation of AA and EtOH in treatments of 2dCA and 4dCA were markedly lower than those in CA. The accumulation of AA in grower B was lower than grower A. The results of this study suggest that the delayed application of CA reduced BBD and this may be due to reduced anaerobic metabolism of fruits in the delayed CA.

Free access