Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Pablo Jourdan x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

Phlox is an important genus of herbaceous ornamental plants previously targeted for germplasm development, characterization, and enhancement by the U.S. Department of Agriculture, National Plant Germplasm System. Among Phlox in cultivation, Phlox paniculata is the most widely grown and intensively bred species, but little is known about variation in genome size and ploidy of this species or of related taxa that may be used for germplasm enhancement. The objective of this study was to assess cytotype variation in a diverse collection of cultivars and wild germplasm of P. paniculata (subsection Paniculatae) and of related taxa in subsections Paniculatae and Phlox. The collection included 138 accessions from seven species and two interspecific hybrids. Flow cytometry was used to estimate holoploid (2C) genome sizes and to infer ploidy levels. Chromosome counts were made to calibrate ploidy with genome size for a subset of taxa. Most cultivars were diploid (2n = 2x = 14) and had mean genome sizes that did not vary between subsections Paniculatae (14.33 pg) and Phlox (14.23 pg) although size variation was greater among cultivars within subsection Phlox. Triploid cultivars of P. paniculata, with a mean genome size of 21.36 pg and mitotic chromosome counts of 2n = 3x = 21, were identified. Such triploids suggests previous interploid hybridization within this taxon. Five tetraploid (2n = 4x = 28) cultivars were found in subsection Phlox; all were selections of P. glaberrima ssp. triflora, and had a mean genome size of 25.44 pg; chromosome counts in one of these confirmed they were tetraploid. The putative hybrid Phlox Suffruticosa Group ‘Miss Lingard’ showed an intermediate genome size of 21.21 pg supporting a triploid, hybrid origin of this taxon. Mean 2C genome sizes among wild-collected accessions were similar to values reported for cultivars (Paniculatae = 14.59 pg, Phlox = 14.23 pg), but taxa in subsection Phlox exhibited greater variation that included two tetraploids identified among wild-collected accessions; one, of P. pulchra, had a mean genome size of 26.17 pg, representing the first report of polyploidy in the taxon. This is the first report on genome size for the majority of species in the study. Although genome size could not be used to differentiate taxa in subsections Paniculatae and Phlox, the data provide further insights into cytotype variation of Phlox germplasm useful for plant breeders and systematists.

Free access

Brassica napus (genome aacc), a natural allotetraploid derived from hybridization between B. oleracea L. (genome cc) and B. rapa L. (genome aa), was synthesized by sexual and somatic interspecific hybridizations from the same parent plants to compare the two methods of combining genomes and assess the genetic consequences of bypassing the gametophytic phase before hybrid formation. Highly heterozygous species parents were first produced by intraspecific hybridization between two subspecies each of B. oleracea and B. rapa. Leaf tissue from young plants of both parental species served as a source of protoplasts for fusion; the same plants were later used for crosses. Seventy-two somatic hybrids were produced using a polyethylene glycol-mediated fusion protocol and 27 sexual hybrids were obtained by embryo rescue. Somatic hybrids were produced between one B. oleracea and two sibling B. rapa plants. Sexual hybrids were successfully produced with only one of the two B. rapa siblings. Hybrids were identified by morphology, isozyme patterns, and total DNA content. Although fertile allotetraploid somatic hybrids were obtained within 7 months after seeding parent lines, >1 year was required to produce fertile sexual hybrids.

Free access

Brassica napus (genome aacc), a natural allotetraploid derived from hybridization between B. oleracea L. (genome cc) and B. rapa L. (genome aa), was resynthesized by somatic and sexual hybridization. Seventy-two interspecific somatic (R0) hybrids and 27 sexual (F1) hybrids were produced from the same parent plants. R0 and F1 hybrids displayed morphology that was intermediate to the species parents, but B. rapa characteristics tended to predominate. R0 hybrids with nuclear DNA content equivalent to natural B. napus were uniform for nuclear-encoded traits, whereas allotetraploid F1 hybrids were variable for traits such as morphology, flower color, and seed production. Chloroplast restriction fragment length polymorphisms (RFLPs) showed unequal segregation in the R0 population favoring the chloroplasts of B. rapa; two of the 58 R0 hybrids tested had only the B. oleracea marker and 10 contained markers of both parents. Mitochondrial RFLPs showed a similar bias among the 56 R0 hybrids tested; only four plants showed B. oleracea markers exclusively, and the remaining plants were evenly distributed between having only B. rapa markers or having combinations from both species. In contrast, sexual hybrids displayed only maternal organelle markers.

Free access

Abstract

More than 65 different genotypes, including cultivars and inbred lines, from five cruciferous species (Brassica oleracea L., B. campestris L., B. napus L., B. juncea L., and Raphanus sativus L.) were tested for their in vitro response of leaf protoplasts. Protoplasts were cultured in three liquid media and the resulting colonies were placed on seven test regeneration media. Significant differences among the species were found in plating efficiency in the frequency of shoot regeneration. Two broad response groups were identified: 1) Cultivars from B. oleracea and B. napus—these generally yielded protoplasts that were able to divide, form colonies at high frequencies, and regenerate shoots at variable frequencies; and 2) cultivars of the other species evaluated, which typically exhibited low plating efficiencies and little, if any, shoot regeneration. Evaluation for the effect of the cytoplasmic constitution of a few B. oleracea breeding lines on in vitro performance indicated that protoplasts carrying the Ogura (R1) male-sterile cytoplasm regenerated shoots at slightly lower frequencies than the corresponding alloplasmic-fertile lines. Genotypes exhibiting high frequency of shoot formation in one medium also had efficient shoot regeneration in other media as well, while genotypes with low shoot regeneration responded consistently in the different media used. This consistency in response indicates that genotype plays a critical role in determining the success of leaf protoplast culture in the crucifers.

Open Access

Breeding and development of ornamental woody plants for specific ideotypes will provide diverse choices to meet specific needs for natural and constructed landscapes. An F1 half-sib family analysis of Magnolia virginiana generated from controlled pollinations was implemented to identify potential juvenile selection strategies for two mature ideotypes: a compact and rounded shrub form (to 2.5 m tall and wide) and a single-stemmed, small tree form (to 4 m tall), both with abundant flowering. The 2-year test was conducted in a container nursery. Fourteen traits were measured in 2007 and 2008, including height at three intervals (July, August, and September), mean branch length and branch count, early and late flower production, collar sprout formation, stem diameter, and branch angle. There were significant differences between F1 half-sib families (P ≤ 0.0001) for all traits. Phenotypic and genetic correlations and narrow sense heritability were estimated for these traits. Phenotypic and genetic correlations showed favorable associations among branch count, caliper, and early flower production. These traits were used to form a selection index for a shrub ideotype. Also, there were positive phenotypic and genetic correlations between height and late flower production, which were both negatively correlated with collar sprout formation. These traits were used to form a selection index for the single-stemmed, small tree ideotype. Narrow sense heritabilities were high for most traits in 2007 but were lower in 2008. Results suggest that selection of phenotypes ranking highest for the traits of interest may yield the desired ideotypes. However, introduction of additional genetic variation through new germplasm accessions may be necessary to maintain breeding progress.

Free access