Search Results
You are looking at 1 - 6 of 6 items for :
- Author or Editor: P.W. Skroch x
- Journal of the American Society for Horticultural Science x
Abstract
Azide as NaN3 or KN3 impregnated on clay granules gave excellent control of yellow nutsedge (Cypetus esculentus L.) compared to methyl isothiocyanate combined with chlorinated C3 hydrocarbons (Vorlex) or a non-hand weeded control. Nematode control was obtained with all treatments. Significant yield responses from the use of azide were obtained with all crops.
Diseases of beans (Phaseolus vulgaris L.) are primary constraints affecting bean production. Information on tagging and mapping of genes for disease resistance is expected to be useful to breeders. The objectives of this study were to develop a random amplified polymorphic DNA (RAPD) marker linkage map using 78 F9 recombinant inbred (RI) lines derived from a Middle-American common bean cross Great Northern Belneb RR-1 [resistant to common bacterial blight (CBB) and halo blight (HB)] × black A 55 [dominant I gene resistance to bean common mosaic potyvirus] and to map genes or QTL (quantitative trait loci) for resistance to CBB, HB, BCMV (bean common mosaic virus), and BCMNV (bean common mosaic necrosis virus) diseases. The RI lines were evaluated for resistance to leaf and pod reactions to Xanthomonas campestris pv. phaseoli (Xcp) (Smith Dye) strain EK-11, leaf reactions to two Pseudomonas syringae pv. phaseolicola (Psp) (Burkholder) Young et al. (1978) strains HB16 and 83-Sc2A, and BCMV strain US-5 and BCMNV strain NL-3. The linkage map spanned 755 cM, including 90 markers consisting of 87 RAPD markers, one sequence characterized amplified region (SCAR), the I gene, and a gene for hypersensitive resistance to HB 83-Sc2A. These were grouped into 11 linkage groups (LG) corresponding to the 11 linkage groups in the common bean integrated genetic map. A major gene and QTL for leaf resistance to HB were mapped for the first time. Three QTL for leaf reactions to HB16 were found on linkage groups 3, 5, and 10. Four regions on linkage groups 2, 4, 5, and 9, were significantly associated with leaf reactions to HB strain 83-Sc2A. The gene controlling the hypersensitive reaction to HB 83-Sc2A mapped to the same region as the QTL on LG 4. The I locus for resistance to BCMV and BCMNV was mapped to LG 2 at about 1.4 cM from RAPD marker A10.1750. Five and four markers were significantly associated with QTL for resistance to CBB in leaves and pods, respectively, with four of them associated with resistance in both plant organs. A marker locus was discovered on LG 10, W10.550, which could account for 44% and 41% of the phenotypic variation for CBB resistance in leaves and pods, respectively. QTL for resistance in pod to CBB, leaf resistance to HB, and the I gene were linked on LG 2.
Randomly amplified polymorphic DNA (RAPD) molecular markers were used to construct a partial genetic linkage map in a recombinant inbred population derived from the common bean (Phaseolus vulgaris L.) cross PC-50 × XAN-159 for studying the genetics of bacterial disease resistance in common bean. The linkage map spanned 426 cM and included 168 RAPD markers and 2 classical markers with 11 unassigned markers. The seventy recombinant inbred lines were evaluated for resistance to two strains of common bacterial blight [Xanthomonas campestris pv. phaseoli (Smith) Dye] (Xcp). Common bacterial blight (CBB) resistance was evaluated for Xcp strain EK-11 in later-developed trifoliolate leaves and for Xcp strains, DR-7 and EK-11, in first trifoliolate leaves, seeds, and pods. One to four quantitative trait loci (QTLs) accounted for 18% to 53% of the phenotypic variation for traits. Most significant effects for CBB resistance were associated with one chromosomal region on linkage group 5 and with two regions on linkage group 1, of the partial linkage map. The chromosomal region (a 13-cM interval) in linkage group 5 was significantly associated with resistance to Xcp strains DR-7 and EK-11 in leaves, pods, and seeds. The regions in linkage group 1 were also significantly associated with resistance to both Xcp strains in more than one plant organ. In addition, a seedcoat pattern gene (C) and a flower color gene (vlae ) were mapped in linkage groups 1 and 5, respectively, of the partial linkage map. The V locus was found to be linked to a QTL with a major effect on CBB resistance.
Our objective was to identify quantitative trait loci (QTL) for seed weight, length, and height segregating in a recombinant inbred line population derived from the common bean (Phaseolus vulgaris L.) cross `PC-50' × XAN-159. The parents and progeny were grown in two separate greenhouse experiments in Nebraska, and in field plots in the Dominican Republic and Wisconsin. Data analysis was done for individual environments separately and on the mean over all environments. A simple linear regression analysis of all data indicated that most QTL appeared to be detected in the mean environment. Based on these results, composite interval mapping (CIM) analysis was applied to the means over environments. For seed weight, strong evidence was indicated for five QTL on common bean linkage groups (LGs) 3, 4, 6, 7, and 8. Multiple regression analysis (MRA) indicated that these QTL explained 44% of the phenotypic variation for the trait. Weaker evidence was found for three additional candidate QTL on bean LGs 4, 5, and 8. All eight markers associated with these QTL were significant in a MRA where the full model explained 63% of the variation among seed weight means. For seed length, CIM results indicated strong evidence for three QTL on LG 8 and one on LG 2. Three additional putative QTL were detected on LGs 3, 4, and 11. The markers associated with the three seed length QTL on LG 8, and the QTL on LGs 2 and 11 were significant in a MRA with the full model explaining 48% of the variation among seed length means. For seed height, three QTL on LGs 4, 6, and 11 explained 36% of the phenotypic variation for trait means. Four of the seven QTL for seed length and two of three QTL for seed height also appeared to correspond to QTL for seed weight. Four QTL for common bacterial blight resistance [Xanthomonas campestris pv. phaseoli (Smith Dye)] and for smaller seed size were associated on LGs 6, 7, and 8. The implications of these findings for breeders is discussed.
Abstract
Staked tomatoes (Lycopersicon esculentum Mill) grown in 8 soil management systems are compared for differences in marketable yields, gross revenues, treatment costs, and net economic values. Maximum marketable yields were obtained using a fumigant and straw mulch combinatory practice, but the highest net economic value (gross revenues less treatment costs) was realized by a fumigant and herbicide ground management practice. These data suggest that the use of mulch materials and/or herbicides increased yields and net returns over standard cultivation practices.
Random amplified polymorphic DNA (RAPD) markers were used to construct a partial linkage map in a recombinant inbred population derived from the common bean (Phaseolus vulgaris L.) cross BAC 6 × HT 7719 for studying the genetics of disease resistance in common bean. The linkage map spanned 545 cM and included 75 of 84 markers used in this study. The population of 128 recombinant inbred lines was evaluated for resistance to common bacterial blight, foliar resistance to web blight [WB; Thanatephorus cucumeris (Frank) Donk], and resistance to rust [Uromyces appendiculatus var. appendiculatus (Pers.:Pers) Unger]. Common bacterial blight [CBB; Xanthomonas campestris pv. phaseoli (Smith) Dye] resistance was evaluated for CBB strain Epif-IV in later-developed trifoliolate leaves and for CBB strain EK-11 in seeds, first trifoliolate leaves, later-developed trifoliolate leaves, and pods. In addition, lines were rated for plant uprightness and branch density. Two to six markers accounted for 14% to 34% of the phenotypic variation for each trait. Significant marker locustrait associations were found for 14 mapped loci and 7 of the 9 unmapped markers. The distribution of detected QTL appeared to be nonrandom with most significant markers associated with more than one trait or closely linked to markers significantly associated with variation for a different trait. One marker, BC4091250, was significantly associated with WB resistance, resistance for CBB strain Epif-IV in later-developed trifoliolate leaves, and resistance for CBB strain EK-11 in first trifoliolate leaves, later-developed trifoliolate leaves, and pods. A rust resistance gene was mapped in an interval 14.6 cM from RAPD marker H191050 and 12.5 cM from marker AJ16250.