Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: P.W. Skroch x
  • HortScience x
Clear All Modify Search

The objective was to detect molecular markers associated with QTL for partial physiological resistance (PPR) to two white mold (WM) isolates, partial field resistance (PFR), plant architecture (PA), and plant height (PH) in a genetic linkage map constructed using recombinant inbred lines (RILs) from the cross `PC-50' (resistant to WM) × XAN-159 (susceptible to WM). Significant correlations (+0.39 and +0.47) were noted between the WM reactions in the greenhouse and field. A significant but negative correlation (–0.33) was observed between the WM reaction and PH in the field. Six QTL affecting PPR to isolate 152 were found on LGs 4, 5, 7, and 8. Six QTL affecting PPR to isolate 279 were found on LGs 2, 3, 4, 7, and 8. Five QTL for PFR were observed on LGs 2, 5, 7, 8, and 11. Two QTL affecting PA were detected on LGs 7 and 8. Two QTL affecting PH were identified on LGs 7 and 8. On one end of LG 8 marker H19.1250 was significant for PPR to both isolates. On the other end of LG 8 the region closely linked to the C locus was significantly associated with PPR to both isolates, PFR, PA and PH. Marker J09.950 on LG 7 was significantly associated with PPR to both isolates, PFR, PH and seed weight. Marker J01.2000 on LG 2 was the most significant locus for both PPR to the isolate 279 and PFR. QTL on LG 5 were found for PPR to the isolate 152 and PFR. Overall, four of the five QTL affecting PFR were also found for PPR to one or both isolates.

Free access

Common bacterial blight (CBB) incited by the bacterial pathogen Xanthomonas campestris pv. phaseoli (Smith) Dye is an important disease of common bean. In a previous study, QTL associated with CBB resistance were described based on RAPD marker analysis of a recombinant inbred population derived from the common bean cross BAC-6 (R) × HT-7719 (S) (resistant × susceptible). The objective of this research is to confirm these previously described candidate marker locus-QTL associations using an inbred backcross PC-50 (S) × BAC-6 (R) and a recombinant inbred Venezuela 44 (S) × BAC-6 (R) population. Two markers previously found to be associated with QTL for CBB resistance in the BAC-6 × HT-7719 population were found to account for 30% of the phenotypic variation for CBB resistance in the PC-50 × BAC-6 inbred backcross population. The three most resistant BC2F3 lines based on marker locus genotypes were ranked 1, 3, and 7 (out of 64) based on phenotypic evaluation. These results provide important confirmation of marker locus-QTL associations and indicate that RAPD markers linked to loci controlling the expression of CBB resistance in common bean may be used to transfer resistance genes into susceptible breeding material.

Free access

Common bacterial blight (CBB) disease, incited by Xanthomonas campestris pv phaseoli (Smith) Dye (Xcp) is an important disease of common beans. Low heritabilities and low genetic correlations were found previously for reactions to Xcp in leaves, pods, and seeds in recombinant inbred (RI) F6 lines from the cross `PC-50 × XAN-159'. RAPD reactions were conducted on the above RI lines of known reactions to Xcp. 134 RAPD markers were mapped to 14 linkage groups using 70 F6 RI lines. Genomic regions involved in the genetic control of the traits were found using single-factor ANOVAs and regression analyses. For seed, pod and leaf reactions, 6, 2, and 5 putative QTLs were identified, which accounted for about 51%, 29%, and 57% of the phenotypic variation in CBB resistance. QTLs were generally independently distributed except for one linkage group with closely linked QTLs for resistance in all plant parts. Molecular marker results confirm previous phenotypic Xcp reaction findings and also may provide for more efficient selection for resistance in the different plant organs.

Free access

Our objective was to identify QTL for seed weight (SW), length, and height segregating in a recombinant inbred line (RIL) population from the cross `PC-50' (Larger SW) × XAN-159 (Smaller SW). The parents and RILs were grown in two separate greenhouse experiments in Nebraska, and in field plots in the Dominican Republic and Wisconsin. Data analysis was done for individual environments separately and on the mean over all environments. A simple linear regression analysis of all data indicated that most QTL appeared to be detected in the mean environment. Composite interval mapping (CIM) analysis was then applied to the means over environments. Eight QTL for SW were detected on common bean linkage groups (LGs) 3, 4, 5, 6, 7, and 8. All eight markers associated with these QTL were significant in a multiple regression analysis (MRA), where the full model explained 63% of the variation among SW means. Six QTL for seed length were detected on LGs 2, 3, 4, 8, and 11 using CIM. The markers associated with the three seed length QTL on LGs 2, 8, and 11 were significant in a MRA with the full model explaining 48% of the variation among seed length means. Three QTL for seed height on LGs 4, 6, and 11 explained 36% of the phenotypic variation for trait means. Four of the six QTL for seed length and two of three QTL for seed height also appeared to correspond to QTL for SW.

Free access

Common bacterial blight(CBB) and rust diseases, incited by the bacterial pathogen Xanthomonas campestris pv. phaseoli (Smith) Dye (Xcp) and Uromyces appendiculatus, respectively, are important diseases of common beans (Phaseolus vulgaris L.). The objectives were to construct a molecular linkage map, to locate CBB resistances, rust resistances and leaf pubescence using RAPDs. Sixteen linkage groups with 22 unassigned markers were identified. 178 RAPD markers and 8 morphological markers were mapped in a Population of 70 RI lines. Regression analysis and interval mapping using MAPMAKER/QTL were used to identify genomic regions involved in the genetic control of the traits. One, two, and three putative QTLs were identified for seed, pod and leaf reactions. These regions accounted for 18%, 25%, and 35% of the phenotypic variation in CBB resistance. A chromosome region on linkage group 1 carried factors influencing all three traits. Rust resistance genes controlling the reactions on the primary and on the 4th trifoliolate leaves (adult plant resistance) were located in linkage group 16. The genes for abaxial leaf pubescence was located on linkage group 9.

Free access