Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: P. R. Johnstone x
  • HortTechnology x
Clear All Modify Search
Authors: and

Limited soil nitrogen (N) availability is a common problem in organic vegetable production that often necessitates in-season fertilization. The rate of net nitrogen mineralization (Nmin) from four organic fertilizers (seabird guano, hydrolyzed fish powder, feather meal, and blood meal) containing between 11.7% and 15.8% N was compared in a laboratory incubation. The fertilizers were mixed with soil from a field under organic management and incubated aerobically at constant moisture at 10, 15, 20, and 25 °C. Nmin was determined on samples extracted after 1, 2, 4, and 8 weeks. Rapid Nmin was observed from all fertilizers at all temperatures; within 2 weeks between 47% and 60% of organic N had been mineralized. Temperature had only modest effects, with 8-week Nmin averaging 56% and 66% across fertilizers at 10 and 25 °C, respectively. Across temperatures, 8-week Nmin averaged 60%, 61%, 62%, and 66% for feather meal, seabird guano, fish powder, and blood meal, respectively. Cost per unit of available N (mineralized N + initial inorganic N) varied widely among fertilizers, with feather meal the least and fish powder the most expensive.

Full access

California melon (Cucumis melo) growers commonly apply calcium (Ca) fertilizers during fruit development to increase fruit firmness and improve storage life. Drip-irrigated field trials were conducted in central California in 2005 and 2006 to evaluate the efficacy of this practice on honeydew (C. melo Inodorus group) and muskmelon (C. melo Reticulatus group). In the 2005 honeydew trial, three weekly applications of 10 lb/acre Ca from calcium nitrate (CN), calcium thiosulfate (CTS), or calcium chloride (CC) were injected into the irrigation system during early melon development. In the 2006 muskmelon trial, two applications of 15 lb/acre Ca from CTS or CC were made early, or two applications of CC late, in melon development. The effect of these Ca fertigation treatments on fruit yield, soluble solids concentration, flesh firmness, and Ca concentration were compared with an untreated control receiving no Ca fertigation. Calcium fertigation had no effect on marketable yield, quality, or Ca concentration of honeydew or muskmelon fruit regardless of application timing or Ca source applied. Loss of firmness during either 2 weeks (honeydew) or 1 week (muskmelon) of postharvest storage was unrelated to Ca fertigation treatment and was not correlated with Ca concentration in fruit tissue. We conclude that under conditions representative of the California melon industry, Ca fertigation at typical application rates is ineffective in improving honeydew or muskmelon yield or fruit quality.

Full access