Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Ning Huang x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

The accumulation of 1-aminocyclopropane-1-carboxylate (ACC), which is a precursor for ethylene production, in plant roots exposed to salinity stress can be detrimental to plant growth. The objectives of this study were to determine whether inoculating roots with bacteria containing deaminase enzymes that break down ACC (ACC-deaminase) could improve plant tolerance to salinity in perennial ryegrass (Lolium perenne) and to examine growth and physiological factors, as well as nutrition status of plants affected by the ACC-deaminase bacteria inoculation under salinity stress. Plants of perennial ryegrass (cv. Pangea) were inoculated with either Burkholderia phytofirmans PsJN or Burkholderia gladioli RU1 and irrigated with either fresh water (control) or a 250 mm NaCl solution to induce salinity stress. The bacterium-inoculated plants had less ACC content in shoots and roots under both nonstressed and salinity conditions. Salinity stress inhibited root and shoot growth, but the bacterium-inoculated plants exhibited higher visual turf quality (TQ), tiller number, root biomass, shoot biomass, leaf water content, and photochemical efficiency, as well as lower cellular electrolyte leakage (EL) under salinity stress. Plants inoculated with bacteria had lower sodium content and higher potassium to sodium ratios in shoots under salinity stress. Shoot and root nitrogen content and shoot potassium content increased, whereas shoot and root calcium, magnesium, iron, and aluminum content all decreased due to bacterial inoculation under salinity treatment. ACC-deaminase bacteria inoculation of roots was effective in improving salinity tolerance of perennial ryegrass and could be incorporated into turfgrass maintenance programs in salt-affected soils.

Free access