Search Results
You are looking at 1 - 4 of 4 items for :
- Author or Editor: N. Suzanne Lang x
- Journal of the American Society for Horticultural Science x
During a 7-day dark postharvest period, Protea neriifolia R.Br. leaf blackening was significantly reduced on floral stems treated with a 24-h 20% sucrose pulse compared with continuous holding in a 0.5% sucrose vase solution or removal of the flowerhead. Leaf blackening on vegetative stems was similar to that on the 20% sucrose-pulsed floral stems. Leaf starch and sucrose concentration profiles demonstrated that stems with reduced leaf blackening maintained higher levels of those carbohydrates during the early postharvest period. Conversely, leaf starch and sucrose reserves were quickly depleted in stem treatments that resulted in early blackening symptoms. Starch concentrations in all treatments of stems dropped 70% to 82% within 24 h of harvest, suggesting that leaf blackening may be initiated during shipping. Ethylene production was not associated with leaf blackening in any treatment. Lipid peroxidation did not differ among floral treatments nor did it increase over the postharvest interval. Oxidized glutathione (GSSG) concentration increased only with the 20% pulsed stems and was not related to leaf blackening. After an initial decrease, leaf respiration rate was generally maintained regardless of treatment. Collectively, these data are consistent with the hypothesis that carbohydrate depletion is the initiating factor in leaf blackening and is accelerated by inflorescence sink demand. We suggest that membrane degradation does not necessarily precede leaf blackening.
Leaf blackening on cut flower Protea nerii[olia R. Br. stems was dramatically reduced under a 12-hour photosynthetic light period (120 μmol·m-2·s-1) at 25C for 15 days compared with stems kept in the dark. In the light, addition of 0.5% exogenous sugar to the vase solution resulted in a maximum of 2.5% leaf blackening, while stems with no exogenous sugar had a maximum of 16.5%. Continuous darkness resulted in 94% leaf blackening by day 7, irrespective of sugar treatment. Starch and sucrose concentrations were markedly lower in leaves on dark-held stems than in leaves on stems held in the light; thus, carbohydrate depletion could be the primary stress that initiates leaf blackening. In the light, rates of carbon exchange and assimilate export were similar, indicating that the amount of carbon fixed maybe regulated by sink demand. The pattern of carbon partitioning changed in light-held leaves of the 0% sugar treatment during rapid floral expansion and senescence. Inflorescence expansion appears to influence partitioning of photoassimilates and storage reserves into transport carbohydrates; under decreased sink demand, the assimilate export rate decreases and photoassimilates are partitioned into starch. The data suggest that sink strength of inflorescences held in darkness may be responsible for the depletion of leaf carbohydrates and. consequently, blackening.
Premature leaf blackening in Protea severely reduces vase life and market value. The current hypothesis suggests that leaf blackening is induced by a sequence of events related to metabolic reactions associated with senescence, beginning with total depletion of leaf carbohydrates. It is thought that this carbohydrate depletion may induce hydrolysis of intercellular membranes to supply respiratory substrate, and subsequently allow vacuole-sequestered phenols to be oxidized by polyphenol oxidase (PPO) and peroxidase (POD) (Whitehead and de Swardt, 1982). To more thoroughly examine this hypothesis, leaf carbohydrate depletion and the activities of PPO and POD in cut flower Protea susannae × P. compacta stems held under light and dark conditions were examined in relationship to postharvest leaf blackening. Leaf blackening proceeded rapidly on dark-held stems, approaching 100% by day 8, and was temporally coincident with a rapid decline in starch concentration. Blackening of leaves on light-held stems did not occur until after day 7, and a higher concentration of starch was maintained earlier in the postharvest period for stems held in light than those held in dark. A large concentration of the sugar alcohol, polygalatol, was maintained in dark- and light-held stems over the postharvest period, suggesting that it is not involved in growth or maintenance metabolism. Polyphenol oxidase activity in light- and dark-held stems was not related to appearance of blackening symptoms. Activity of PPO at pH 7.2 in light-held stems resulted in a 10-fold increase over the 8-day period. Activity in dark-held stems increased initially, but declined at the onset of leaf blackening. There was no significant difference in POD activity for dark- or light-held stems during the postharvest period. Total chlorophyll and protein concentrations did not decline over the 8-day period or differ between light- and dark-held stems. Total phenolics in the dark-held stems increased to concentrations ≈30% higher than light-held stems. Consequently, the lack of association between membrane collapse, leaf senescence, or activities of oxidative enzymes (PPO or POD) with leaf blackening does not support the hypothesis currently accepted by many Protea researchers. An alternative scenario may be that the rapid rate of leaf starch hydrolysis imposes an osmotic stress resulting in cleavage of glycosylated phenolic compounds to release glucose for carbohydrate metabolism and coincidentally increase the pool of free phenolics available for nonenzymatic oxidation. The physiology of such a carbohydrate-related cellular stress and its manifestation in cellular blackening remains to be elucidated.
Xylem vessel anatomy was examined in tissues surrounding the graft union of sweet cherry (Prunus avium L.) scion (stem) and nondwarfing, semi-dwarfing, or dwarfing rootstock (root) combinations, to characterize potential changes in anatomical features during the initial stages of graft union formation. Vessel element length, frequency, diameter, lumen area (LAV), and mean vessel hydraulic diameter (VDh) were examined in `Rainier' (P. avium) scion wood grafted onto nondwarfing `Colt' (P. pseudocerasus L. × P. avium) or `F 12/1' (P. avium) rootstock and semi-dwarfing `Gisela 6' [`Gi 6' (P. cerasus L. × P. canescens L.)], or dwarfing `Gisela 5' [`Gi 5' (P. cerasus × P. canescens)] rootstock systems in: heterograft combinations (commercial scion-rootstock combinations); homografts (scion and rootstock are the same genetic material); and reciprocal heterografts (rootstock tissue grafted onto scion tissue). Vessel element length was not affected by rootstock, but vessel frequency and lumen area in graft union tissues were smaller in `Rainier'/`Gi 5' (dwarfing combination) than in `Rainier'/`Colt' (nondwarfing combination). The heterograft combination of `Rainier'/`Gi 5' had smaller scion LAV, lower VDh and narrower vessels than homograft or reciprocal heterograft combinations. As callus differentiated into vascular elements, xylem rays in `Rainer'/`Gi 5' tended to develop at an acute angle to the longitudinal axis of the tree and there was an increase in nonfunctional phloem in `Rainer'/`Gi 5' compared to `Rainer'/`F 12/1'. Collectively, the data provides further evidence that a combination of smaller and fewer vessels in the scion and graft union, as well as irregular vessel orientations in the vascular tissue within dwarfing combinations could contribute to hydraulic resistance in the graft union resulting in reduced scion growth (dwarfing).