Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Myriam N. Siham x
- HortTechnology x
Although methyl bromide (MBr) has been phased out in developed countries, limited amounts will still be available in the United States for the next few years through critical-use exemptions. Therefore, production practices reducing MBr use are desirable from the grower and environmental standpoints. Fumigation efficacy depends on the duration of fumigants in the soil and mulch permeability; thus, field trials were conducted to compare MBr retention of low- and high-density polyethylene (LDPE and HDPE respectively) mulches with seven metallized mulches and virtually impermeable films (VIF) from different manufacturers, and to assess the effect of MBr retention on nutsedge (Cyperus rotundus and C. esculentus) control with these mulches. The compared mulches were 1) white VIF; 2) black VIF; 3) white-on-black VIF; 4) cowound VIF, which has a clear nylon layer that covers the bed and is superimposed with a layer of black HDPE mulch; 5) metallized; 6) metallized heat trap with a black stripe on the bed center; 7) metallized with a black stripe on the bed center; 8) black LDPE mulch; and 9) black HDPE mulch. All treatments received 175 lb/acre of MBr + chloropicrin (Pic; 67:33 v/v). A nonfumigated control plot covered with LDPE mulch, and a treatment covered with HDPE mulch and fumigated with 350 lb/acre of MBr + Pic were also established. Nutsedge emergence through mulches increased rapidly beginning 18 days after treatment (DAT). Nutsedge populations at 28 DAT in the nonfumigated control covered with LDPE mulch had the greatest emergence (88.8 plants/ft2), followed by LDPE and HDPE mulches with 175 lb/acre of MBr + Pic (67.0 plants/ft2), HDPE mulch with 350 lb/acre of MBr + Pic (25.0 plants/ft2), and VIF and metallized mulches with 175 lb/acre of MBr + Pic (<2 plants/ft2). There were no significant differences in fumigant retention between the metallized mulches and VIF. These mulches retained 3.7 and 1.8 times more MBr than HDPE and LDPE mulches fumigated with 175 and 350 lb/acre of MBr + Pic, respectively.
Field trials were conducted to: 1) determine the effect of mulch types and applied concentrations of 1,3-dichloropropene + chloropicrin (1,3-D + Pic) on fumigant retention; and 2) examine the influence of mulch films and 1,3-D + Pic concentrations on purple nutsedge (Cyperus rotundus) control. 1,3-D + Pic concentrations were 0, 600, 1000, and 1400 ppm, and mulch types were white on black high-density polyethylene mulch (HDPE), white on black virtually impermeable film (VIF-WB), silver on white metalized mulch, and green VIF (VIF-G). Regardless of the initial 1,3-D + Pic concentrations and mulch types, fumigant retention exponentially decreased over time. When 1400 ppm of 1,3-D + Pic were injected into the soil, 1,3-D + Pic dissipation reached 200 ppm at 3.2, 2.9, 2.2, and 1.5 days after treatment (DAT) under VIF-G, VIF-WB, metalized, and HDPE mulches, respectively. At 5 weeks after treatment (WAT), HDPE mulch had the highest purple nutsedge densities among all films. The treatments covered with VIF-G had purple nutsedge densities <5 plants/ft2, regardless of the applied fumigant concentration, while VIF-WB and metalized mulch reached this weed density with 696 ppm of the fumigant. In contrast, 1186 ppm of 1,3-D + Pic were needed to reach this weed density with HDPE mulch. Correlation analysis showed that mulch fumigant retention readings at 3 DAT effectively predict purple nutsedge densities at 5 WAT (r ≤ –0.94). These findings proved that 1,3-D + Pic activity on purple nutsedge can be improved with the use of more retentive films, which cause longer fumigant retention, thus improving efficacy. Growers might elect reducing 1,3-D + Pic rates to compensate for the relatively higher cost of fumigant-retentive mulches, without losing herbicidal activity.
Field trials were conducted to determine the effect of yellow nutsedge (Cyperus esculentus) and purple nutsedge (C. rotundus) time of establishment on their distance of influence on bell pepper (Capsicum annuum). A single seedling of each weed species was transplanted 1, 2, 3, 4, and 5 weeks after transplanting (WAT) bell pepper. Each weed was separately established in the center of plots within double rows of bell peppers. Crop height and yield were determined from bell pepper plants located at 6, 13.4, 24.7, and 36.5 inches away from each weed. Bell pepper height was unaffected by weed species, time of establishment, or the interaction between these factors. Marketable yield data indicate that yellow nutsedge was more aggressive than purple nutsedge interfering with bell pepper. When yellow nutsedge was established at 1 WAT, bell pepper yield reduction was between 57% and 32% for plants at 6 and 13.4 inches away from the weed respectively, which represents a density of ≈0.14 plant/ft2. One purple nutsedge plant growing since 1 WAT at 6 inches along the row from two bell pepper plants (0.43 plant/ft2) produced a yield reduction of 31%. These results indicate that low nutsedge densities, which are commonly believed to be unimportant, can cause significant bell pepper yield reductions.