Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Michelle L. Jones x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

Following a compatible pollination in carnation (Dianthus caryophyllus L. `White Sim'), a signal that coordinates postpollination events is translocated from the style to the ovary and petals. In this paper the roles of ethylene and its direct precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), in this signaling were investigated. Following pollination, ethylene and ACC increased sequentially in styles, ovaries, and petals. Ethylene and ACC were highest initially in the stigmatic region of the style but by 24 hours after pollination were highest in the base. Activity of ACC synthase correlated well with ethylene production in styles and petals. In ovaries, ACC synthase activity decreased after pollination despite elevated ethylene production. Lack of ACC synthase activity in pollinated ovaries, coupled with high ACC content, suggests that ACC is translocated within the gynoecium. Further, detection of propylene from petals following application to the ovary provided evidence for movement of ethylene within the flower. Experiments that removed styles and petals at various times after pollination suggest there is a transmissible pollination signal in carnations that has reached the ovary by 12 hours and the petals by 14 to 16 hours.

Free access

Previous studies of plant tolerance to low temperature have focused primarily on the cold acclimation response, the process by which plants increase their tolerance to freezing in response to low nonfreezing temperatures, while studies on the deacclimation process have been largely neglected. In some plants, cold acclimation is accompanied by an increase in raffinose family oligosaccharides (RFO). The enzyme α-galactosidase (EC 3.2.1.22) breaks down RFO during deacclimation by hydrolyzing the terminal galactose moieties. Here we describe the isolation of PhGAL, an α-galactosidase cDNA clone from Petunia (Petunia ×hybrida `Mitchell'). The putative α-galactosidase cDNA has high nucleotide sequence homology (>80%) to other known plant α-galactosidases. PhGAL expression increased in response to increased temperature and there was no evidence of developmental regulation or tissue specific expression. Increases in α-galactosidase transcript 1 hour into deacclimation corresponded with increases in α-galactosidase activity and a concomitant decrease in raffinose content, suggesting that warm temperature may regulate RFO catabolism by increasing the transcription of the α-galactosidase gene. This information has potential practical applications whereby α-galactosidase may be targeted to modify endogenous raffinose accumulation in tissues needed for freezing stress tolerance.

Free access

Autophagy allows for the degradation and recycling of macromolecules and organelles. It plays a significant role in cellular homeostasis, nutrient remobilization during leaf senescence, and abiotic stress responses. Autophagosomes are the hallmark feature of autophagy, and their formation is regulated by the AuTophaGy-related (ATG) genes. The expression profiles of ATG genes have been reported in several agronomic and model plants. To gain insight into the role of autophagy in senescence and abiotic stress responses in floriculture crops, we investigated the regulation of petunia (Petunia ×hybrida) ATG genes (PhATG4, PhATG5, PhATG6, PhATG7, PhATG8a, and PhATG13) during flower senescence and in response to low fertility, nutrient deficiency (-N, -P, and -K), and chronic (weeks) or acute (hours) salt stress using quantitative polymerase chain reaction (PCR). Age-induced corolla wilting coincided with the increased expression of all ATG genes. Petunia ATG genes were upregulated by low fertility and N and P deficiency. Acute salt stress rapidly increased the expression of the petunia ATG genes, but chronic salt stress treatments did not. This project provides insight into the role of autophagy in flower senescence and abiotic stress responses in floriculture crops.

Free access

Metacaspases are cysteine proteases from plants, fungi, and protozoans that have structural similarity to metazoan caspases. They play a critical role in programmed cell death (PCD) induced by developmental cues and environmental signals. In this study, a type I metacaspase (PhMC1) was identified and characterized from Petunia ×hybrida ‘Mitchell Diploid’ (MD) (petunia). The recombinant PhMC1 had activity against the metacaspase substrate Boc-GRR-AMC (GRR). Activity was highest at pH 7–9 and was dependent on the active site C237. Quantitative polymerase chain reaction (qPCR) showed that PhMC1 transcripts increased at a later stage of petal development, when corollas were visibly senescent in both pollinated and unpollinated flowers. Gene expression patterns were similar to that of the senescence-related gene PhCP10, a homolog of Arabidopsis thaliana (arabidopsis) AtSAG12. PhMC1 transcripts were upregulated in the petals by ethylene treatment. This ethylene regulation did not require protein synthesis, indicating that PhMC1 is a primary ethylene response gene. Metacaspase-like activity against Boc-GRR-AMC increased in protein extracts from senescing petals. RNAi was used to knock down the expression of PhMC1. Transgenic PhMC1 petunias had no abnormal, vegetative growth phenotypes under normal greenhouse conditions, but flower senescence was accelerated by an average of 2 days.

Free access

Mature pollen from Petunia hybrida contains significant levels of 1-aminocyclopropane-1-carboxylic acid (ACC), and this ACC is thought to play a role in pollination-induced ethylene by the pistil. We investigated the developmental accumulation of ACC in anthers and pollen. The level of ACC in anthers was very low until the day before anthesis, at which time it increased 100-fold. A 1.1-kb partial ACC synthase cDNA clone (pPHACS2) was amplified from total RNA isolated from mature anthers by reverse transcriptase, followed by polymerase chain reaction using oligonucleotide primers synthesized to conserved amino acid sequences in ACC synthases. The expression of pPHACS2 mRNA during anther development was correlated with the accumulation of ACC and was localized to the pollen grain. The pPHACS2 cDNA was used to identify the PH-ACS2 gene from a library of genomic DNA fragments from Petunia hybrida. PH-ACS2 encoded an ACC synthase transcript of four exons interrupted by three introns. The ACC synthase protein encoded by the PH-ACS2 gene shared >80% homology with ACC synthases from tomato (LE-ACS3) and potato (ST-ACS1a). A chimeric PH-ACS2 promoter-β-glucuronidase (GUS) gene was used to transform petunia and transgenic plants were analyzed for GUS activity. GUS staining was localized to mature pollen grains and was not detected in other tissues. Despite similarities to LE-ACS3, we did not detect GUS activity under conditions of anaerobic stress or in response to auxin. A series of 5-prime-flanking DNA deletions revealed that sequences within the PH-ACS2 promoter were responsible for pollen-specific expression.

Free access