Search Results

You are looking at 1 - 10 of 10 items for :

  • Author or Editor: Michelle L. Jones x
  • HortScience x
Clear All Modify Search

In Dianthus caryophyllus flowers the pollinated stigma gives rise to signals that are translocated throughout the flower and ultimately result in corolla senescence. Pollination leads to a rapid increase in ethylene production by the pollinated styles followed by ethylene biosynthesis from the ovaries, the receptacle tissue, and lastly the petals. The accumulation of ACC in these floral tissues also correlates with the sequential pattern of ethylene production. Ethylene production by the pollinated style can be defined temporally by three distinct peaks, with the first peak detected as early as 1 hour after pollination. In a carnation flower with multiple styles it is also possible to detect ethylene production from an unpollinated style on a pollinated gynoecium by 1 hour after pollination. This finding provides evidence for very rapid post-pollination signaling between styles. ACC synthase expression is induced in pollinated styles as early as 1 hour after pollination, but no message is detected in pollinated ovaries. ACC synthase enzyme activity is also absent in the pollinated ovaries despite the accumulation of large amounts of ACC in the ovary after pollination. This indicates that ACC must be translocated between organs after pollination. When a pollinated styles is removed from the flower at least 12 hours after pollination the corolla will still senesce. This indicates that the pollination signal has exited the style by this time. Evidence in carnations suggests that ACC and ethylene may both be involved in aspects of post-pollination signaling.

Free access

The family Solanaceae, which includes both important crop and ornamental species, is generally considered to have high sensitivity to ethylene. Our objectives were to evaluate ethylene sensitivity between accessions with the family Solanaceae and to determine whether similar sensitivity was observed in seedlings and mature plants. For the seedling evaluations, seeds were germinated and grown in the dark on filter paper saturated with 0 or 100 μM 1-aminocyclopropane-1-carboxylic acid (ACC; the immediate precursor to ethylene). The relative hypocotyl length at 100 μM ACC was compared with untreated control (0 μM) seedlings. Mature plants were treated with 0 or 10 μL·L−1 ethylene in the dark for 24 hours. Ethylene responses including flower abscission, flower senescence, and epinasty were observed and quantified. Seedlings and mature plants were classified as having no response, low, medium, or high ethylene sensitivity based on the severity of the ethylene responses observed. Sensitivity differences were observed among seedling, juvenile, and mature plants, and a range of ethylene responses and symptom severity was observed between accessions within a species. The majority of the accessions were classified as medium or high ethylene sensitivity at both the seedling and mature plant stages. Solanum melongena ‘Black Beauty’ (eggplant) had a low response to ethylene at the seedling stage and a high response at the mature plant stage, whereas Petunia ×hybrida ‘Daddy Orchid’ had a high response at the seedling stage and a low response at the mature plant stage. Peppers (Capsicum annum), tomatoes (Solanum lycopersicum), and tomatillos (Physalis ixocarpa) exhibited both floral and vegetative symptoms of ethylene damage, whereas calibrachoas (Calibrachoa ×hybrida), eggplants, nicotianas, and petunias exhibited only floral symptoms. The most common floral response to ethylene treatment was flower abscission, which was observed in almost all of the Solanum, Capsicum, and Nicotiana accessions. We consistently observed ethylene-induced epinasty in the genus Capsicum and in all of the Solanum except eggplant. Our results indicated that developmental stage influenced ethylene sensitivity, and there was not a consistent correlation between seedling and mature plant responses within the Solanaceae accessions that we evaluated.

Free access

Microbial biostimulants can promote ornamental plant growth during production and improve crop performance under abiotic stresses. Even though biostimulants have shown potential in many agricultural applications, the effectiveness and specificity of many products are not well understood. The objective of this study was to analyze the growth-promoting effects of microbial biostimulants during the greenhouse production of floriculture crops. We evaluated 13 biostimulant products in greenhouse-grown zinnia (Zinnia elegans ‘Magellan Ivory’) and petunia (Petunia ×hybrida ‘Carpet White’) at low fertility (one-third of the optimal fertilizer concentration). Biostimulant products 1 and 2 containing multiple species of beneficial bacteria and fungi, and product 10 containing Bacillus subtilis QST 713, were found to increase various aspects of plant growth, including the growth index, leaf chlorophyll content (SPAD index), and shoot biomass. Both flower biomass and numbers were greater in petunia treated with product 1, and leaf size increased in zinnia treated with products 1, 2, and 10. Plants treated with these effective biostimulants at low fertility had similar or better growth and quality than untreated plants grown under optimal fertility. The concentration of various nutrient elements in leaves was higher in zinnia plants treated with biostimulant products 1, 2, or 10 compared with the negative control. Some putative mechanisms for biostimulant effectiveness, the possible reasons for biostimulant ineffectiveness, and the potential for using biostimulants as a sustainable cultural strategy are discussed. This study provides useful information about microbial biostimulant effectiveness, which is important for the development and utilization of biostimulants in the greenhouse production of floriculture plants.

Open Access

Drought stress during the shipping and retailing of floriculture crops can reduce postproduction shelf life and marketability. The plant hormone abscisic acid (ABA) mediates drought stress responses by closing stomata and reducing water loss. Applications of exogenous s-ABA effectively reduce water loss and allow a variety of species to survive temporary periods of drought stress. Unfortunately, s-ABA application can also lead to leaf chlorosis, which reduces the overall quality of economically important bedding plant species, including Viola ×wittrockiana (pansy). The goal of this research was to determine how to prevent s-ABA-induced leaf chlorosis in pansy and a closely related species, Viola cornuta (viola). All concentrations of both spray (250 or 500 mg·L−1) and drench (125 or 250 mg·L−1) s-ABA applications induced leaf yellowing. Young plants at the plug stage and 11-cm finished plants with one to two open flowers were further evaluated to determine if the developmental stage of the plants influenced s-ABA effectiveness or the development of negative side effects. Both plugs and finished pansies and violas developed leaf chlorosis after s-ABA applications, but symptoms were generally more severe in finished plants. The individual application of benzyladenine (BA), gibberellic acid (GA4+7), or the ethylene perception inhibitor, 1-methylcyclopropene, before s-ABA application had no effect on the development of s-ABA-induced leaf chlorosis. However, applications of 5 or 10 mg·L−1 BA and GA4+7 as a mixture (BA + GA4+7) before a drench or spray application of s-ABA prevented leaf chlorosis. The application of s-ABA and BA + GA4+7 would allow floriculture crops to tolerate temporary periods of drought stress without any loss of postproduction quality.

Free access

Salinity, drought and temperature frequently limit crop productivity. Transgenic Petunia ×hybrida cv. Mitchell with altered endogenous raffinose family oligosaccharides (RFO) due to over-expression (sense) or under-expression (antisense) of the tomato α-galactosidase gene show that antisense increases in RFO are associated with greater tolerance to freezing stress (Pennycooke et al., 2003). Because vegetative propagules of these antisense lines rooted and established more quickly than their sense counterparts, we hypothesized that antisense lines would also respond to salinity and wilting stress. Salinity treatment plants were exposed to 50-200 mm NaCl graduated 25 mm every 3 days and held at 200 mm for 13 days. Dry-down treatments were watered to pot capacity, then not watered until the onset of wilting. This was repeated in cycles for 26 days. Data were collected on plant growth, root/shoot ratios, and leaf water potential. Fresh and dry weights in four of the six antisense lines exceeded the wild type and sense lines. Osmotic potential for salinity and dry-down plants was 160% to 220% higher than control plants. Pearson correlations revealed that higher osmotic potential was partially associated with higher fresh weight (r = 0.7214, P = 0.02) and root/shoot ratios (r = -0.7414, P = 0.02) in salinity stressed plants. In the dry-down drought stressed plants, osmotic potential was not associated with fresh weight (r = 0.3364, ns) nor root/shoot ratio (r = -0.0431, ns). Salinity stress reduced root mass compared to control and dry down plants. Sense plants grew slowly and were highly variable.

Free access

Geraniums are sensitive to ethylene during shipping and respond by abscising their petals. Treatment of stock plants with ethylene (ethephon) in order to increase cutting yield resulted in earlier flowering in Pelargonium × hortorum `Kim' and `Veronica', but did not result in increased susceptibility to petal abscission following exposure to 1.0 μL·L-1 ethylene. Treatment of `Kim', `Veronica', `Fox', and `Cotton Candy' with 1.0 μL·L-1 ethylene resulted in increased petal abscission within one hour, with `Fox' being the most sensitive and `Kim' the least. Pretreatment of florets with 1-MCP for 3, 6, 12, or 24 hours at concentrations of 0.1 or 1.0 μL·L-1 decreased petal abscission in all cultivars following exposure to 1.0 μL·L-1 ethylene. Treatment with 0.1 μL·L-1 1-MCP for 1 hour reduced petal abscission rates in ethylene treated florets to that of non-ethylene treated controls in all cultivars except Fox. `Fox' florets, which are more sensitive to ethylene, required 12 to 24 hours of exposure to 1-MCP to reduce petal abscission rates to that of control flowers. Pretreatment of geranium plants with 1-MCP can be used to reduce petal shattering during shipping. Chemical names used: 2-chloroethanephosphonic acid (ethephon); 1-methylcyclopropene (1-MCP).

Free access

Ethylene gas can cause extensive damage to bedding plants during production, shipping, and retailing. Seedlings exposed to ethylene exhibit the triple response, which includes an exaggerated apical hook, thickened hypocotyl, and reduced hypocotyl elongation. Our objective was to determine if the hypocotyl elongation component of the seedling triple response could be used to predict the sensitivity of mature plants at the marketable stage. Eighteen common bedding plants were evaluated. For the seedling hypocotyl elongation screen, seeds were germinated and grown in the dark on filter paper saturated with various concentrations of 1-aminocyclopropane-1-carboxylic acid (ACC; the immediate precursor to ethylene). The relative hypocotyl length at each ACC concentration was compared with untreated control (0 μM) seedlings. Mature plants, with at least four open flowers, were treated with ethylene (0, 0.01, 0.1, 1, or 10 μL·L−1) in the dark for 24 hours. Phenotypic responses to ethylene, including flower abscission, flower senescence, leaf abscission, leaf chlorosis, and epinasty, were rated on a scale of 0 to 5. Five species exhibited very little reduction in hypocotyl elongation when grown on ACC (low sensitivity). The remaining species were classified as medium or high ethylene sensitivity at the seedling stage. The most common symptoms of ethylene damage observed in mature plants were leaf epinasty, flower abscission, and flower senescence. The severity of these responses was used to identify plants with high, medium, or low sensitivity to ethylene. For six of the bedding plant species that were equally responsive at both developmental stages, the seedling hypocotyl elongation screen would provide a reliable means of predicting the ethylene sensitivity of mature plants.

Free access

Humic substances are components of soil organic matter that influence soil structure and fertility. Humic and fulvic acids can be extracted from soil and other organic sources, and are used as biostimulants to promote plant growth and increase nutrient availability and uptake. The goal of this study was to determine whether selected humic and fulvic acid–based commercial products would promote growth and flowering of petunia (Petunia ×hybrida) ‘Picobella Blue’ grown in soilless media with low or optimal fertilizer rates. Plants were grown in 11.4-cm pots filled with peat-based media [80:20 peat:perlite (v/v); pH 5.4]. Three biostimulant products were evaluated at different rates and application frequencies: Huma Pro, a liquid humic acid biostimulant; Fulvi Pro, a liquid fulvic acid biostimulant; and Micromate, a powder containing both humic and fulvic acids. In Expt. 1, Huma Pro and Fulvi Pro were drenched weekly onto the growing media at a rate of 5, 10, or 20 mL⋅L–1; Micromate was drenched weekly at a rate of 5, 10, 20, or 40 g⋅L–1. Plants were fertilized with either 50 mg⋅L–1 nitrogen (N) (low fertility) or 100 mg⋅L–1 N (optimal fertility) from Jack’s Professional 20N–1.3P–15.7K Petunia FeED each irrigation. Control plants received fertilizer but no biostimulant treatments. In Expt. 2, biostimulant treatments were drenched once at transplant, biweekly, or weekly at a rate of 1.25, 2.5, 5, or 10 mL⋅L–1 for Huma Pro and Fulvi Pro; and at 5, 10, 20, or 40 g⋅L–1 for Micromate. All plants received constant liquid feed at the lower fertilizer rate of 50 mg⋅L–1 N. In Expt. 1, plants fertilized with 100 mg⋅L–1 N and treated with 20 g⋅L–1 Micromate had the best performance. The average shoot dry weight was 32% greater than that of the control plants. Micromate (20 g⋅L–1)-treated plants had an average of five more flowers per plant, and they flowered 4 days earlier than untreated control plants. In Expt. 2, plants treated with 40 g⋅L–1 of Micromate weekly had the greatest shoot dry weight compared with the other treatments. Weekly Micromate treatments (40 g⋅L–1) resulted in plants with an average of 13 more flowers per plant, which flowered 7 days earlier than control plants. Plants treated with Fulvi Pro and Huma Pro at 20 mL⋅L–1 had a significantly greater concentration of potassium in shoot tissue, whereas Micromate treatments at 20 and 40 g⋅L–1 resulted in a greater concentration of phosphorous in the shoots. The humic and fulvic acids in Micromate improved petunia crop quality by promoting vegetative growth, increasing flower numbers, and reducing the time to flower.

Open Access

Drought stress is a major cause of postproduction decline in bedding plants. The plant hormone abscisic acid (ABA) regulates drought stress responses by mediating stomatal closure, thereby reducing transpirational water loss. Exogenous ABA applications delay wilting and allow plants to survive short periods of severe drought. The effectiveness of the ABA biochemical, s-ABA (ConTego™; Valent BioSciences Corp., Libertyville, IL), at delaying wilting and extending shelf life during drought stress was evaluated in six bedding plant species. Spray and drench applications of 0 or 500 mg·L−1 s-ABA were applied to Impatiens walleriana (impatiens), Pelargonium ×hortorum (seed geranium), Petunia ×hybrida (petunia), Tagetes patula (marigold), Salvia splendens (salvia), and Viola ×wittrockiana (pansy). Water was subsequently withheld and wilting symptoms were compared between treated and control plants. s-ABA applications delayed wilting in all crops by 1.7 to 4.3 days. Leaf chlorosis was observed after s-ABA application in drought-stressed seed geraniums, marigolds, and pansies. In seed geraniums and marigolds, the drought stress itself resulted in leaf chlorosis that was equivalent to or more severe than the s-ABA application alone. In pansies, s-ABA applications induced leaf chlorosis that was more severe than the drought treatment. Overall, s-ABA was consistently effective at reducing water loss and extending shelf life for all species treated. Applications of s-ABA to bedding plants before shipping and retailing would allow plants to maintain marketability even under severe drought stress conditions.

Free access

Phalaenopsis orchids are an increasingly popular potted house plant in the United States. New cultivars have a long display life in home environments, but these epiphytes are often overirrigated by consumers. Irrigating potted Phalaenopsis orchids weekly with ice cubes has been recommended as a simple solution to help consumers, but concern has been raised about whether the ice cubes will cause low temperature damage in these tropical plants. The effect of ice cube irrigation on the display life and quality of four cultivars of potted Phalaenopsis orchids was, therefore, evaluated. Irrigation treatments included weekly application of three ice cubes or the equivalent volume of room-temperature tap water. The longevity of individual flowers and the overall display life of the orchid plants were determined. Monthly measurements determined the volume of leachate in the outer decorative pots after irrigation. The quantum yield of photosystem II (ΦPSII) in roots and leaves was evaluated monthly to determine if photosynthetic efficiency was affected by the ice irrigation. The temperature in the orchid bark growing media during irrigation events was recorded, and a programmable antifreeze bath was used to determine the temperature at which damage to PSII was observed in orchid roots. The flower longevity and display life were unaffected by irrigation treatment. In general, the leachate volume over time was the same or lower in ice irrigated orchids compared with those irrigated with the same volume of water. The lowest temperature in the bark media irrigated with ice cubes was ≈11 °C, while controlled freezing experiments showed that damage to photosystem II in orchid roots did not occur until bath temperatures were below −7 °C. The internal temperature of roots in direct contact with ice cubes decreased to around 4 °C. Ice cube irrigation had no detrimental effects on the quality or display life of potted Phalaenopsis orchids growing in bark, demonstrating that ice cubes are a viable method of irrigating these tropical house plants.

Open Access