Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Michael P. Dzakovich x
  • HortScience x
Clear All Modify Search

Light-emitting diodes (LEDs) are an attractive alternative to high-pressure sodium (HPS) lamps for plant growth because of their energy-saving potential. However, the effects of supplementing broad-waveband solar light with narrow-waveband LED light on the sensory attributes of greenhouse-grown tomatoes (Solanum lycopersicum) are largely unknown. Three separate studies investigating the effect of supplemental light quantity and quality on physicochemical and organoleptic properties of greenhouse-grown tomato fruit were conducted over 4- or 5-month intervals during 2012 and 2013. Tomato cultivars Success, Komeett, and Rebelski were grown hydroponically within a high-wire trellising system in a glass-glazed greenhouse. Chromacity, Brix, titratable acidity, electrical conductivity (EC), and pH measurements of fruit extracts indicated plant response differences between lighting treatments. In sensory panels, tasters ranked tomatoes for color, acidity, and sweetness using an objective scale, whereas color, aroma, texture, sweetness, acidity, aftertaste, and overall approval were ranked using hedonic scales. By collecting both physicochemical as well as sensory data, this study was able to determine whether statistically significant physicochemical parameters of tomato fruit also reflected consumer perception of fruit quality. Sensory panels indicated that statistically significant physicochemical differences were not noticeable to tasters and that tasters engaged in blind testing could not discern between tomatoes from different supplemental lighting treatments or unsupplemented controls. Growers interested in reducing supplemental lighting energy consumption by using intracanopy LED (IC-LED) supplemental lighting need not be concerned that the quality of their tomato fruits will be negatively affected by narrow-band supplemental radiation at the intensities and wavelengths used in this study.

Free access

In addition to photosynthesis, light is a critical mediator of secondary metabolism in plants, signaling the production of potentially health-promoting phytochemicals and regulating the emission of volatile organic compounds (VOCs) that can alter the sensory perception of a tomato. Light-emitting diodes (LEDs) are a viable way to test the effects of individual wavebands of light and are being quickly adopted by the greenhouse tomato industry. However, studies characterizing the effects of specific wavelengths of light or supplemental lighting on phytochemical content in general are lacking. We hypothesized that enriching the amount of supplemental blue and/or red light that tomatoes receive would positively affect the amount of carotenoids and phenolic compounds that accumulate in tomato fruits through cryptochrome and/or phytochrome-dependent signaling pathways. To test this hypothesis, we compared the chemical and sensory characteristics of tomatoes grown with overhead high-pressure sodium (OH-HPS) lamps to those grown with intracanopy (IC)-LEDs emitting different ratios of red, blue, and far red light. Tomatoes were profiled for total soluble solids, titratable acidity, ascorbic acid content, pH, total phenolics, and prominent flavonoids and carotenoids. Our studies indicated that greenhouse tomato fruit quality was only marginally affected by supplemental light treatments. Moreover, consumer sensory panel data indicated that tomatoes grown under different lighting treatments were comparable across the lighting treatments tested. Our research suggests that the dynamic light environment inherent to greenhouse production systems may nullify the effects of wavelengths of light used in our studies on specific aspects of fruit secondary metabolism.

Free access