Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Michael Dodge x
  • HortTechnology x
Clear All Modify Search

Commercial floral products with claimed anti-ethylene effects were evaluated for their efficacy in promoting postharvest longevity of gypsophila (`Perfecta', `Gilboa', and `Golan' baby's breath, Gypsophila paniculata L.). These products were applied according to label directions and compared to a laboratory preparation of silver thiosulfate (STS) prepared as a short pulse treatment and as an overnight treatment; they were also compared to the new anti-ethylene gas, 1-methylcyclopropene (1-MCP). After these pretreatments, the flowers were exposed to ambient air or to 0.7 ppm ethylene gas for 36 hours; other flowers received a simulated shipping treatment. Products containing adequate concentrations of silver consistently extended the display life of gypsophila. Products with low concentrations of silver (<10 ppm) or containing aminoethoxyvinylglycine (AVG) offered no more protection than treatments without anti-ethylene compounds. Overnight treatments with STS were as effective as short pulse treatments. Although 1-MCP pretreatment helped prevent the effects of ethylene on flowers that were open at the time of pretreatment, it provided no protection for buds that opened subsequently. There were no marked differences in ethylene sensitivity among three gypsophila cultivars.

Full access

Three commercially available “anti-ethylene” treatment solutions were tested for their effectiveness in protecting carnations (Dianthus caryophyllus L. `Improved White Sim', `Atlantis', and `Nora'), Beard-Tongue (Penstemon hartwegii x P. cobaea `Firebird'), and Delphinium sp. from external ethylene levels ranging from 0.01 to 1.2 ppm. Flowers were treated according to label directions and then exposed to ethylene for 20 or 24 h at 20 to 23C after a 0-, 24-, or 48-h delay. Only the product containing silver thiosulfate (STS) provided protection against ethylene injury, whereas products containing inhibitors of ethylene synthesis identified as analogs of either aminooxyacetic acid (AOA) or aminoethoxyvinyl glycine (AVG) offered little or no protection. The safe commercial use of products containing STS is discussed.

Full access