Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Masahiko Yamada x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

Berry texture of grapes (Vitis labruscana Bailey, V. vinifera L., and their hybrids) can be characterized by two factors: 1) difficulty of breakdown in mastication and 2) firmness, which can be mechanically measured as deformation at first major peak (DFP) and maximum force (MF) of the force-deformation curve in flesh puncture tests. Crisp texture (easily breakable and firm flesh texture), one of the most important factors for the quality of table grapes, corresponds to a combination of small DFP (≤2.5 mm) and large MF (≥0.9 N). Obtaining offspring with crispy flesh is a primary objective in grape interspecific hybrid breeding at the National Institute of Fruit Tree Science, Japan. In this study, the expected proportion (EP) of offspring with crispy flesh as a genotypic value was estimated using a population consisting of 23 full-sib families each with eight offspring. An analysis of variance in the offspring, which estimated between-family and within-family variances, and the regression analysis of the family mean (Fm) of eight offspring in each full-sib family on mid-parental value (MP) were conducted for DFP and MF. The results revealed that the total genetic variation in offspring was mostly explained by the variance due to the regression and the within-family variance for both DFP and MF. No significant heterogeneity of within-family variance was detected by Bartlett's test for either DFP or MF. Therefore, a simple model was used to calculate EP: Fm is solely determined by the regression of Fm on MP, and all families have an equal within-family genetic variance due to segregation. Since merely a weak correlation relationship existed between DFP and MF, its influence was omitted in calculating EP. The EP of offspring having crisp texture was estimated to be 11% for an MP value of DFP of 2.5 mm (DFP for `Italia'), 6% for a DFP of 3.5 mm (DFP for `Athens'), and 3% for a DFP of 4.5 mm (DFP for `Bath'); the MP value of MF was assumed to be 0.7 N (MF for `Steuben' and `Italia') in this calculation.

Free access

Three individuals in progeny from each of 39 crosses and their parents in Japanese persimmon (Diospyros kaki Thunb.) were evaluated for fruit ripening time. Analysis of variance for the progeny, which estimated between- and within-cross variance, and the regression of the mean value in a full-sib family on the mid-parental value (MP) revealed that the genetic differences among crosses could be explained solely by MP. Genotypic values of individuals in progeny from a cross were assumed to be normally distributed around the regression line with within-cross genetic variance. Based on the parental mean performance of 3.5 fruit on a single tree for three years, the coefficient of regression of mean values in a full-sib family on MP was 0.99 ± 0.10, and the proportion of individuals in progeny having genotypic values ripening earlier than early October was estimated as 52%, 24%, and 7% for three sets of mid-parents differing in their ripening time, i.e., early, middle, and late October, respectively. On the basis of the parental mean performance in 10 fruit on a single tree without yearly repetition, the regression coefficient was estimated as 0.91 and the proportion was estimated as 44%, 20%, and 6% for the three sets of mid-parents, respectively.

Free access

Expression patterns of the genes involved in condensed tannin (CT) biosynthesis during fruit development was investigated in a Chinese pollination-constant, nonastringent (PCNA) persimmon (Diospyros kaki Thunb.) `Luo Tian Tian Shi'. The transcript levels of phenylalanine ammonia-lyase (PAL) and dihydroflavonol reductase (DFR) in `Luo Tian Tian Shi' were detected at high levels throughout the fruit growth. Chalcone synthase (CHS) and flavonol 3-hydroxylase (F3H) also continued to be transcribed during fruit growth, although their levels decreased earlier than PAL and DFR. In contrast, expression levels of these genes declined into undetectable levels at an early stage of fruit development in Japanese PCNA persimmon. In addition, anthocyanidin reductase (ANR), which encodes a key enzyme of the proanthocyanidin biosynthesis, was transcribed at high levels in `Luo Tian Tian Shi' during fruit growth, but not in Japanese PCNA persimmon. By contrast, the expression of D. kaki serine carboxypeptidase-like protein 1 (DkSCPL1) that was obtained from suppression subtractive hybridization (SSH) analysis between artificially astringency-removed fruit and astringent fruit in a different experiment, declined earlier than the other flavonoid biosynthesis genes in `Luo Tian Tian Shi', coincident with the termination of the tannin cell development. In the F1 progeny of the cross between `Luo Tian Tian Shi' and Japanese PCNA `Taishu', similar expression patterns were obtained among segregated PCNA and astringent offspring. These results indicate that Chinese PCNA is different from Japanese PCNA in expression of the genes involved in CT biosynthesis. In conclusion, we clarified that expression of the genes (PAL to ANR, but not SCPL) involved in flavonoid biosynthesis was continuous in the Chinese PCNA cultivar, despite the termination of tannin cell development.

Free access

Japanese persimmon (Diospyros kaki Thunb.) cultivars are classified into four types depending upon the nature of astringency loss of the fruit. Among them, the pollination-constant and nonastringent (PCNA) type is the most desirable for fresh fruit consumption due to the trait of stable loss of astringency on the tree with fruit development. Lack of tannin accumulation is the main cause of natural astringency loss in PCNA-type fruit, and is qualitatively inherited. The PCNA trait is recessive to the non-PCNA trait. In this study, we investigated amplified fragment length polymorphism (AFLP) markers for the trait of natural astringency loss of PCNA-type fruit using bulked segregant analysis (BSA) for efficient selection of PCNA type plants in a breeding population. A total of 128 primer combinations were tested and one AFLP marker was found to be linked to the dominant allele controlling the trait for astringency. This marker, EACC/MCTA-400, was absent in all of the PCNA-type plants tested, whereas it was present in about half of the non-PCNA-type plants tested. However, RFLP analysis using this marker enabled the detection of the other dominant allele, and all PCNA-type plants could be distinguished from the non-PCNA-type plants. Application of this marker system will be useful for the selection of PCNA-type plants in persimmon breeding.

Free access

To aid the breeding of citrus (Citrus sp.) for high carotenoid content, we assayed the fruit flesh of 48 cultivars and selections within a parental population consisting of both old and new cultivars and selections at two locations in Japan. The mean total carotenoid (CAR) content across all 48 cultivars and selections over the two locations was 26.59 μg·g−1 fresh weight (FW). The most prominent carotenoid was β-cryptoxanthin [BCR (12.09 μg·g−1 FW)] followed by violaxanthin [VIO (8.04 μg·g−1 FW)], ζ-carotene (2.27 μg·g−1 FW), phytoene (1.86 μg·g−1 FW), and β-carotene (0.96 μg·g−1 FW). Broad-sense heritabilities of CAR, BCR, and VIO were 0.80 or greater based on a sample of five fruit on one tree per location in one time sampling for 1 year in a location, which were revealed to be large enough for gauging the genetic variation. The mean CAR and BCR contents in a cultivar and selection group in advanced generations were nearly the same as in the initial population, suggesting no or little selection pressure on carotenoid content in the citrus breeding so far. High carotenoid contents in cultivars and selections released or selected recently, which have high fruit qualities, suggest their high potential for combining high fruit quality and high carotenoid content in breeding. We showed that the critical phenotypic value used in selecting hybrid seedlings can be determined from the estimate of environmental variance.

Free access