Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Mary J. Camp x
Clear All Modify Search

The influence of mulch types (black polyethylene, red polyethylene, and straw-vetch in raised bed hill culture) on the chemical composition of `Northeaster' and `Primetime' strawberry (Fragaria ×ananassa Duch.) fruit and plant parts was evaluated. Ascorbic acid (AA), malic acid, citric acid, and ellagic acid levels were higher in `Primetime' than in `Northeaster' fruits, while `Northeaster' had a higher soluble solids content (SSC). Fruit grown on straw-vetch had lower SSC than did those grown on the polyethylene mulches. The AA content in the fruit of either cultivar was not affected by the mulch treatment. Fruit grown on the straw-vetch mulch had less red surface and flesh color but higher pigment intensity than fruit grown on the polyethylene mulches. Strawberry plants grown on straw-vetch mulch had the largest leaf area and the highest chlorophyll content, while plants grown on red polyethylene mulch had the smallest leaf area and lowest chlorophyll content. There were significant mulch × cultivar interactions in fruit titratable acid (TA) and AA levels, sugars, citric and ellagic acid contents, leaf area and chlorophyll levels, and soluble carbohydrate and starch contents in leaves, petioles, crowns, crown-roots, and roots. TA was highest in `Northeaster' fruit when grown on red polyethylene, whereas TA was highest in `Primetime' fruit when grown on straw-vetch. The highest fruit citric acid levels were found in straw-vetch mulched plots of `Northeaster', and in black polyethylene mulched plots of `Primetime'. Ellagic acid accumulation was highest in `Northeaster' fruit grown on black polyethylene, and in `Primetime' fruit grown on red polyethylene or straw-vetch mulches. Fruit glucose content was highest in `Northeaster', but lowest in `Primetime', when grown on the straw-vetch mulch. There was a general tendency for soluble carbohydrate and starch levels in plant tissues to be lowest when the plants were grown in red polyethylene mulch and highest when grown in black polyethylene mulch. `Primetime' contained higher total carbohydrate levels than did `Northeaster' in all tissues tested.

Free access

Consumer acceptance of fresh and processed tomato (Lycopersicon esculentum Mill.) products is influenced by product appearance, flavor, aroma, and textural properties. Color is a key component that influences a consumer's initial perception of quality. Beta-carotene and lycopene are the principal carotenoids in tomato fruit that impart color. Analytical and sensory analyses of fruit quality constituents were conducted to assess real and perceived differences in fruit quality between orange-pigmented, high-beta-carotene cherry tomato genotypes and conventional lycopene-rich, red-pigmented cherry tomato cultivars. Thirteen sensory attributes were evaluated by untrained consumers under red-masking light conditions where differences in fruit color could not be discerned and then under white light. Panelists preferred the appearance of the red-pigmented cultivars when viewed under white light, but scored many of the other fruit-quality attributes of red- and orange-pigmented genotypes similarly whether they could discern the color or not. Irrespective of light conditions, significant genotype effects were noted for fruit appearance, sweetness, acidity/sourness, bitterness, tomato-like flavor, unpleasant aftertaste, firmness in fingers, juiciness, skin toughness, chewiness, bursting energy, and overall eating quality. Attributes whose scores differed between white and red-masking lights were intensities of tomato aroma, tomato-like flavor, sweetness, bursting energy, juiciness, and overall eating quality. The results demonstrated a color bias favoring red-pigmented fruit and highlight the influence that color has on perception of tomato fruit quality, particularly on tomato-like flavor, juiciness, and overall eating quality. Interactions between fruit chemical constituents likely influenced perceptions of quality. High-beta-carotene genotypes contained higher levels of sugars and soluble solids and equal or higher titratable acidity than the red-pigmented cultivars. Total volatile levels did not differ among genotypes; however, several individual volatiles were significantly higher in high-beta-carotene genotypes.

Free access

Tomato fruit firmness is a key quality component of tomatoes produced for processing applications. Fruit firmness is generally considered a quantitatively inherited trait. Pericarp firmness of modern tomato cultivars is believed to be derived from a fairly narrow genetic background and is the result of the cumulative effort of numerous breeders over many years. Despite inferior phenotypes, wild species contain loci that can substantially increase tomato fruit quality. In the current study, inheritance of fruit firmness in firm and ultra-firm processing tomato germplasm developed from transgressive segregants of interspecific Lycopersicon esculentum × L. hirsutum and intraspecific L. esculentum crosses was characterized. Large-fruited breeding lines that varied in fruit firmness from soft to firm were identified for genetic analyses. A six-parent diallel of these advanced breeding lines was developed for field trials over multiple locations. Fruit firmness in the resulting 36 lines was determined by measuring fruit elastic properties during fruit puncture and compression. Following loading for compression, stress relaxation was recorded for 15 s. A three-parameter model was used to fit the relaxation curves. There was little correlation between firmness (maximum force) and the three relaxation parameters, i.e., firmness measured the elastic component and the relaxation parameters measured the viscous portions of the texture. General and specific combining ability for firmness derived from the respective genetic backgrounds was determined. Genetic variance components for fruit firmness were estimated using a diallel analysis and narrow sense heritability was measured using parent-offspring regression.

Free access

Experiments were conducted to compare changes in quality of slices of red tomato (Lycopersicon esculentum Mill., cv. Sunbeam) fruit from plants grown using black polyethylene or hairy vetch mulches under various foliar disease management systems including: no fungicide applications (NF), a disease forecasting model (Tom-Cast), and weekly fungicide applications (WF), during storage at 5 °C under a modified atmosphere. In this study, we used the fourth uniform slice from the stem end and analyzed for firmness, soluble solids content (SSC), titratable acidity (TA), pH, electrolyte leakage, molds, yeasts and occurrence of water-soaked areas. With both NF and Tom-Cast fungicide treatments, slices from tomato fruit grown with hairy vetch mulch showed greater firmness than those from tomato fruit grown with black polyethylene mulch after 12 d of storage. Ethylene production of slices from tomato fruit grown using hairy vetch mulch under Tom-Cast was about 1.5- and 5-fold higher than that of slices from tomato fruit grown under the WF and NF fungicide treatments after 12 d, respectively. Within each fungicide treatment, slices from tomato fruit grown using hairy vetch mulch showed less chilling injury (water-soaked areas) than those from tomatoes grown using black polyethylene mulch. The percentage of water-soaked areas for slices from tomato fruit grown using black polyethylene mulch under NF was over 7-fold that of slices from tomato fruit grown using hairy vetch under Tom-Cast. These results suggest that, under our conditions, fruit from plants grown using hairy vetch mulch may be more suitable for fresh-cut slices than those grown using black polyethylene mulch.

Free access

Experiments were conducted to compare changes in quality of slices of red tomato (Lycopersicon esculentum Mill. `Sunbeam') fruit from plants grown using black polyethylene or hairy vetch mulches under various foliar disease management systems including: no fungicide applications (NF), a disease forecasting model (Tom-Cast), and weekly fungicide applications (WF), during storage at 5 °C under a modified atmosphere. Slices were analyzed for firmness, soluble solids content (SSC), titratable acidity (TA), pH, electrolyte leakage, fungi, yeasts, and chilling injury. With both NF and Tom-Cast fungicide treatments, slices from tomatoes grown with hairy vetch (Vicia villosa Roth) mulch were firmer than those from tomatoes grown with black polyethylene mulch after 12 days storage. Ethylene production of slices from fruit grown using hairy vetch mulch under Tom-Cast was ≈1.5- and 5-fold higher than that of slices from WF and NF fungicide treatments after 12 days, respectively. The percentage of water-soaked areas (chilling injury) for slices from tomatoes grown using black polyethylene mulch under NF was over 7-fold that of slices from tomatoes grown using hairy vetch under Tom-Cast. When stored at 20 °C, slices from light-red tomatoes grown with black polyethylene or hairy vetch mulches both showed a rapid increase in electrolyte leakage beginning 6 hours after slicing. However, slices from tomatoes grown using the hairy vetch mulch tended to have lower electrolyte leakage than those grown with black polyethylene mulch. These results suggest that tomatoes from plants grown using hairy vetch mulch may be more suitable for fresh-cut slices than those grown using black polyethylene mulch. Also, use of the disease forecasting model Tom-Cast, which can result in lower fungicide application than is currently used commercially, resulted in high quality fruit for fresh-cut processing.

Free access

Fresh pepper (Capsicum) fruit that are sliced and/or diced are referred to as fresh-cut products. The current report evaluates the inheritance of postharvest attributes that contribute to pepper fresh-cut quality. Marketable green fruit of large-fruited Capsicum annuum accessions with bell and related pod types (Class 1), C. annuum accessions with jalapeno and serrano pod types (Class 2), and thin-walled “aji”-like tabasco pod types from Capsicum baccatum, Capsicum frutescens, and Capsicum chinense (Class 3) were processed and stored up to 14 days in selective oxygen transmission rate packaging. Fresh-cut attributes were influenced by genotype as well as year. For all pod types, O2 and CO2 partial pressures in storage packages, tissue weight loss, and electrolyte leakage differed among accessions, days of storage, and years of testing. Percent O2 declined and CO2 and electrolyte leakage generally increased during storage. Some accessions in Class 1 and Class 2 maintained acceptable product quality during storage. Changes in fruit weight loss were small with greater weight loss observed in Class 1 accessions relative to weight loss for Class 2 and Class 3. Broad-sense heritability for fresh-cut attributes was moderate to low indicating that it will be difficult to breed for fresh-cut quality.

Free access