Search Results

You are looking at 1 - 10 of 32 items for :

  • Author or Editor: Martin J. Bukovac x
  • HortScience x
Clear All Modify Search

Abstract

I am deeply honored to have been selected to participate in this centennial recognition of the enactment of the Hatch Act signed 100 years ago. I am particularly pleased because my entire educational and professional life has been interwoven with the goals and objectives of this far-reaching concept in agricultural research. Celebrations of this kind, especially centennials, provide opportunities to reflect on accomplishments of the past and to dream of the future.

Open Access

Abstract

The abscission of maturing fruit is an important process which has not been extensively studied. Earlier reports on fruit abscission in the cherry have stressed premature drop associated with failures in fruit-set (2, 20). With the development of various mechanical harvesting devices and the rapid commercial adoption of machine harvesting (14, 15), attention has now been focused on abscission of mature fruit.

Open Access

The effects of CPPU [forchlorfenuron, N-(2-chloro-4-pyridinyl)-N-phenylurea] on berry development of Vitis labrusca and V. labrusca × V. vinifera cultivars was evaluated under field conditions. A concentration response was initially established by spraying clusters of `Himrod' at a mean berry diameter of about 5 mm with 0, 5, 10, or 15 mg·L–1 CPPU. Berry enlargement was monitored (16, 30, 44, and 59 days after treatment) during development. Cluster mass, number of berries per cluster, berry mass and firmness, and °Brix were determined at harvest. Berry mass was dramatically increased (2.3 versus about 3.6 g/berry) at harvest by all concentrations of CPPU. Cluster mass and compactness were also increased and berry firmness was linearly related to CPPU concentration (r 2 = 0.997). There was no significant effect on number of berries per cluster (79 to 86). °Brix, rachis necrosis at harvest, and berry abscission after 30 days of refrigerated storage (1 °C) were significantly reduced. Effect of time of CPPU application (0, 5, and 10 mg·L–1) was established by treatment of clusters at mean berry diameters of about 4, 5, 7, and 9 mm. Response was indexed by following berry enlargement at 14, 28, 42, and 56 (maturity) days after treatment. Maximum berry size for both 5 and 10 mg·L–1 was obtained from applications at 4 to 7 mm berry diameter. Relative response of seedless and seeded cultivars was compared by application of CPPU at 0, 5, 10, or 15 mg·L–1 to clusters (4 to 6 mm berry diameter) of seedless `Vanessa' and `Lakemont' and seeded `Concord' and `Niagara'. Bioresponse was determined by a time course of berry enlargement and berry and cluster mass, number of berries per cluster, and rating cluster compactness at maturity. Except for `Lakemont' at the 5 mg·L–1 concentration, CPPU at all concentrations increased seedless berry diameter significantly from the first measurement at 14 through 56 days after application. Berry and cluster mass and cluster compactness were significantly increased in `Vanessa'. In contrast, the only effect of CPPU on the two seeded cultivars was an increase in berry size in `Concord' and an initial increase in berry size 14 days after application in `Niagara'.

Free access

Micelles of two nonionic surfactants (Triton X-114 and Neodol 91) were shown by gel filtration chromatography to solubilize nondissociated NAA molecules in aqueous solutions. Micelle solubilization of nonpolar active ingredients in aqueous spray systems alters the distribution of the chemical in the spray solution and may influence chemical deposit formation and penetration characteristics. Chemical names used: 2-(1-naphthyl)acetic acid (NAA), octylphenoxy polyethoxylate-7.5 POE (Triton X-114), linear alcohol (C9-11) polyethoxylate-6 POE (Neodol 91).

Free access

Water conductance of the cuticle of mature fruit of apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf., `Golden Delicious' Reinders/`Malling 9' (M.9)], sweet cherry (Prunus avium L., `Sam'/`Alkavo'), grape (Vitis vinifera L.), pepper (Capsicum annuum L. var. annuum Fasciculatum Group, `Jive'), and tomato (Lycopersicon esculentum Mill.) was de ter mined using excised epidermal segments (consisting of epidermis, hypodermis, and some cell layers of parenchyma) and enzymatically isolated cuticular membranes (CM) from the same sample of fruit. Segments or CM were mounted in diffusion cells and transpiration was monitored gravimetrically. Conductance (m·s-1) was calculated by dividing the flux of water per unit segment or CM area (kg·m-2·s-1) by the difference in water vapor concentration (kg·m-3) across segments or CM. Transpiration through segments and through CM increased with time. Conductance of segments was consistently lower than that of newly isolated CM (3 days or less). Conductance decreased with increasing time after isolation for apple, grape, or sweet cherry CM, and for sweet cherry CM with increasing temperature during storage (5 to 33 °C for 4 days). There was no significant effect of duration of storage of CM on conductance in pepper or tomato fruit. Following storage of CM for more than 30 days, differences in conductance between isolated CM and excised segments decreased in apple, grape, and sweet cherry, but not in pepper or tomato. Use of metabolic inhibitors (1 mm NaN3 or 0.1 mm CCCP), or pretreatment of segments by freezing (-19 °C for 18 hours), or vacuum infiltration with water, had no effect on conductance of apple fruit segments. Our results suggest that living cells present on excised segments do not affect conductance and that epidermal segments provide a useful model system for quantifying conductance without the need for isolating the CM. Chemical names used: sodium azide (NaN3); carbonylcyanide m-chlorophenylhydrazone (CCCP).

Free access

Gibberellin A3 (GA) applied to virus-infected sour cherry (Prunus cerasus L., `Montmorency') trees inhibits flower initiation and promotes spur formation. However, response to a given dose may vary. Differential foliar absorption has been suggested as a major source of this variation. Therefore, we studied if surfactants would reduce variation in GA absorption. Uptake through the abaxial surface exceeded that through the adaxial surface by about one order of magnitude (adaxial surface 1.1 vs 7.8% in 1988, 0.7 vs 16.6% in 1989). GA uptake was markedly affected by surfactants. Over a 24-hr uptake period, Activator 90 and Ortho X-77 were most effective (abaxial surface 38.3 and 37.4% in 1989), whereas Regulaid did not affect GA uptake. L-77 significantly depressed absorption (abaxial surface 9.1% in 1989). In addition to the level of uptake, surfactants also changed GA absorption kinetics. Penetration increased linearly over a 96-hr time period when Regulaid was included. However, with Ortho X-77, uptake was rapid initially but levelled off within 96 hr. These findings will be discussed in relation to biological response data obtained in the field experiments.

Free access

The plant cuticle is the prime barrier to penetration of foliar-applied plant growth regulators (PGR). Spray additives of various chemistries are frequently included in a tank mix to increase performance of PGRs. We have reported that urea and ammonium nitrate (AN) enhance transcuticular penetration of 14C-labeled NAA (pKa 4.2) from aqueous droplets (pH 5.2) and their subsequent deposits through enzymatically isolated tomato fruit cuticular membranes (CM). Studies on effects of Triton × surfactants on AN-enhanced NAA penetration showed an additional 25% increase in NAA penetration and the AN:surfactant interaction was significant. Also, some alkylamine hydrochlorides increased NAA penetration. Studies comparing NAA penetration through tomato and pepper fruit and Citrus leaf CM in the presence of 8 mM AN or 8 mM ethylamine HCl showed that all three species exhibited the same trend for penetration at 120 h: ethylamine HCl > AN > NAA only. Comparative NAA penetration for CM of the three species was pepper > Citrus > tomato, with significant differences (P > 0.006) in NAA penetration, as indexed by initial slope and penetration after 120 h. On addition of AN, NAA penetration was greater (range 3% to 40%) for Citrus and pepper CM than tomato CM. When ethylamine HCl was added, NAA penetration through Citrus and pepper CM was less (–37 and –27%, respectively) than tomato CM as measured by the initial slope, but 6% and 11%, respectively, more than tomato CM for penetration after 120 h. The differences in NAA penetration among the three species cannot be explained by cuticle thickness, since pepper and tomato CM are 2.5- to 3.5-fold thicker than Citrus CM. We have suggested that the enhanced NAA penetration mediated by AN and ethylamine HCl (and other alkylamine HCl examined) may be related to their hygroscopic properties leading to greater deposit hydration. The significance of the differences among the species CM and surfactant-enhanced NAA penetration will be discussed, in relation to diffusion in the non-living, non-metabolic plant cuticle.

Free access

Abstract

The development of the embryo sac was followed during the pollination period in ‘Montmorency’ sour cherry (Prunus cerasus L.) and related to fruit set. Twenty five percent to 40% of the embryo sacs were incomplete, degenerating, or contained four nuclei or fewer at anthesis and were considered nonfunctional. The effective pollination period extended for 3 to 5 days in each of two growing seasons, and fruit set ranged from 14% to 26%. The incidence of nonfunctional ovules at anthesis did not appear to be sufficient to fully account for the limited fruit set observed. Other factors, most likely physiological, play a contributing role.

Open Access

Abstract

Growth and form of numerous fruits are closely related to the number and distribution of developing seeds. The effect of seeds on fruit shape is particularly apparent for the Conference pear, where the length: width ratio is inversely related to seed content (10).

Open Access

Abstract

The presence of abscisic acid (ABA) in both conjugated and free forms was established by thin-layer and gas-liquid chromatography and by combined gas chromatography-mass spectrometry. The concentration of the free acid was greater than that of conjugated ABA early in fruit development (Stages I and II); however, the conjugated form was more prevalent than the free acid during Stage III. The highest concentration of both the free acid and the conjugated ABA was found during periods of most active fruit enlargement and low concentrations during the retarded phase of pericarp growth. The conjugated form represented a significant and, during Stage III, the major portion of the total ABA present.

Open Access