Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Marilyn H.Y. Hovius x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

Breeders have found field screening for onion white rot resistance to be unreliable since consistently moderate to high disease levels that significantly differentiate cultivars, do not occur over field sites and years. The objective was to see if a greenhouse or laboratory technique could predict field reaction of onion accessions. Onion (Allium cepa) accessions were grown in fields naturally infested with the white rot causing fungus (Sclerotium cepivorum) in 1999 and 2000 (New Zealand) and in 2000 and 2001 (Canada). The field disease levels were low at three sites, moderate at two and high at one. Field screening was not a reliable predictor of white rot reaction when disease incidence was low. Onion accessions were screened for resistance in the greenhouse using nonsterile muck soil (NSMS) and sterile muck soil (SMS) with S. cepivorum sclerotia as the inoculum source. Total disease incidence was significantly higher in the NSMS compared to the SMS and accessions showed significant variability for white rot reaction in both soils. Two laboratory-based techniques were used to test the effect of onion volatiles on mycelium growth in culture. The volatiles from susceptible accessions resulted in faster radial growth of S. cepivorum mycelium (on water agar) and height of aerial mycelium (on potato dextrose agar) than volatiles from resistant accessions. Disease incidence in the greenhouse, S. cepivorum culture growth rates on water agar media and aerial mycelial height were all good predictors of field disease incidence in a covariance analysis. The best predictor was aerial mycelial height, which was predictive of field disease incidence in four out of six field sites. Onion breeders can use the methods described in this study in breeding for white rot resistance.

Free access

Breeders have found field screening for white rot (Sclerotium cepivorum Berk.) resistance in onion (Allium cepa L.) to be unreliable since consistently moderate to high disease levels that significantly differentiate cultivars do not occur over field sites and years. The objective was to determine if differences in onion white rot resistance levels were associated with differing S-alk(en)yl-l-cysteine sulfoxide (ACSO) levels. A collection of onion breeding lines and hybrids were evaluated in field trials at six sites in 1999-2001. High performance liquid chromatography was used to analyze ACSOs in onion plant organs. Four main cysteine-sulfoxides exist in Allium L. species: methyl (MCSO), 2-propenyl (2-PeCSO), 1-propenyl (1-PeCSO), and propyl (PCSO). 1-PeCSO was predominant in onion leaves, bulbs, and roots. 2-PeCSO was found in trace amounts in onion leaves and roots. There was significantly more 2-PeCSO and total ACSO (roots only) and 1-PeCSO (roots and bulbs) in accessions that were more susceptible to white rot in the field trials. This is the first report of significant differences in ACSO contents among white rot susceptible and resistant onions. A covariance analysis was used to determine if the ACSO levels that significantly distinguished among accessions could predict field onion white rot reaction. 1-PeCSO from both roots and bulbs was the best predictor of field disease incidence in field sites that had low, moderate, and high disease levels. Although the ACSO concentrations were not assessed on an individual plant basis, breeders may be able to screen onions for resistance to S. cepivorum by comparing onion root or bulb 1-PeCSO levels based on the results from this research. White rot incidence in the field should be higher in those plants whose roots and bulbs have the highest levels of 1-PeCSO.

Free access