Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Lakshmy Gopinath x
  • HortTechnology x
Clear All Modify Search

The availability of freshwater is a growing concern throughout the world as it is an increasingly valuable and limited resource. Alternative water resources such as recycled water low in quality and high in salinity are now frequently used to irrigate turfgrass. However, irrigating with highly saline water can affect the growth, performance, appearance, and quality of turfgrass. Bermudagrass (Cynodon sp.) is the most commonly used turfgrass throughout the southern United States. In this study, the spectral reflectance and visual response of ‘Riviera’ common bermudagrass (Cynodon dactylon) were evaluated by consecutively irrigating with 12 salinity concentrations (4–48 dS·m−1) in increments of 4 dS·m−1 via manual overhead irrigation for 30 days. The experiment was replicated in time in a controlled environment with four replications for each salinity treatment and control. ‘Riviera’ maintained a leaf firing (LF) value above 5 (rated on a scale from 1 to 9) when irrigated with 28 dS·m−1 for 30 days. Also, the LF value did not fall below 2 when irrigated with a salinity concentration of 48 dS·m−1 for 30 days, suggesting high salinity tolerance of ‘Riviera’. However, in this study, the normalized difference vegetation index (NDVI) had a lower ability to detect the increase in salinity stress due to the limited area measured by the NDVI measuring device used. An increase in sodium ion concentration was observed in the shoot with increasing salinity concentrations. The NDVI was highly correlated (r = 0.93) to LF, indicating the usefulness of NDVI as a tool to measure the magnitude of salinity stress. The multiple linear regression analysis revealed that the data showed a linear response to salinity stress with LF (r 2 = 0.86) and NDVI (r 2 = 0.76) decreasing linearly as the salinity concentration and days of treatment increased. This study provides an accurate depiction of the spectral and visual responses of ‘Riviera’ when exposed to multiple salinity concentrations with narrow increments.

Open Access

Suitable tensile strength is essential for sod harvest, transport, and installation. Thirty-nine bermudagrass (Cynodon sp.) entries were evaluated for sod handling quality (SHQ) and sod tensile strength (STS) during 2014–15. The SHQ (a discontinuous qualitative parameter) was evaluated using a 1 to 5 scale with 1 = complete pad separation during handling and 5 = no cracking or separation in the sod pad with excellent quality. The STS (a quantitative parameter) was determined using the force required to shear/separate the sod pad. Sod harvests were conducted at 14, 22, and 24 months after planting (MAP). The entry, harvest date, and their interaction affected STS and SHQ. Entries OKC 1302 and 12-TSB-1 had greater STS than ‘Patriot’ but less STS than ‘Latitude 36’, ‘Tifway’, ‘Astro’, and ‘TifGrand’. The seeded entry PST-R6T9S had the lowest STS and SHQ. The overall mean STS and SHQ were lowest at 22 MAP, which could be attributed to the slow recovery of the entries after Winter 2014. A strong positive correlation (r = 0.92) between STS and SHQ suggests that SHQ can be used as a rapid field method to estimate suitability for sod harvest. A predictive linear relationship between overall STS and overall SHQ (r 2 = 0.85) found predicted STS values of 8.5, 22.6, 36.8, and 51.0 kg⋅dm–2 for overall mean SHQ ratings of 2, 3, 4, and 5, respectively. The results of this work will help sod producers in cultivar selection and will aid breeders in making commercialization decisions.

Open Access