Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Lakshmy Gopinath x
  • HortScience x
Clear All Modify Search

The susceptibility of warm-season turfgrasses such as bermudagrass (Cynodon spp.) to winter injury in the transition zone is a major concern. Therefore, the objective of the study was to evaluate five golf course putting green-type experimental genotypes (OKC6318, OKC0805, OKC1609, OKC0920, and OKC3920) and three commercially available bermudagrasses (‘Champion Dwarf’, ‘TifEagle’, and ‘Tahoma 31’) for freeze tolerance by subjecting them to 11 freezing temperatures (–4 to –14 °C) under controlled environment conditions. The experiment was conducted in batches, with four genotypes per batch, and each batch was replicated in time. The mean lethal temperature to kill 50% of the population (LT50) for each genotype was determined. There were significant differences in LT50 values among the bermudagrass genotypes. ‘Champion Dwarf’ had an LT50 value ranging from –5.2 to –5.9 °C across all three batches. The experimental genotypes tested in this study had LT50 values ranging from –7.0 to –8.1 °C and were each lower than that of ‘Champion Dwarf’. ‘Tahoma 31’, the top performing genotype, had an LT50 value ranging from –7.8 to –9.0 °C across all three batches. OKC 3920 was the only experimental genotype with an LT50 value in the same statistical group as ‘Tahoma 31’. The information gained from this research would be useful for breeders to gauge the genetic gain in freeze tolerance in breeding golf course putting green-type bermudagrass.

Open Access

There is a growing trend of cultivating hybrid bermudagrass [Cynodon dactylon (L.) Pers. × Cynodon transvaalensis Burtt-Davy] on golf course putting greens in the transition zone because of its excellent quality in the summer months, coupled with less pesticide input than creeping bentgrass (Agrostis stolonifera L.). However, the long-term success of bermudagrass putting greens is hindered by low temperatures in winter months, particularly in the transition zone. To address this issue, in addition to genetic improvement for cold hardiness through the development of new cultivars, effective management approaches are necessary to enhance the winter survival of putting green–type bermudagrass. The objective of this study was to investigate the relative freeze tolerance of four bermudagrasses and the effects of raising mowing height on the freeze tolerance of putting green–type bermudagrasses. In this study, two experimental putting green–type bermudagrasses (11X2 and OKC0805) along with cultivars TifEagle and OKC3920 were tested at two mowing heights (3.2 vs. 6.4 mm) at freeze temperatures that ranged between –4 and –11 °C. The lethal temperature to kill 50% of the population (LT50) as well as regrowth vigor during recovery were evaluated. Variety ‘OKC3920’ demonstrated enhanced freeze tolerance compared with ‘TifEagle’ at both mowing heights. Increasing the mowing height from 3.2 mm to 6.4 mm improved freeze tolerance for most genotypes tested in this study. After exposing the grasses to –8 °C for 1 hour, genotypes such as 11X2 exhibited better regrowth vigor and demonstrated a faster recovery. This study suggests that golf course managers can enhance winter resilience of bermudagrass putting greens by selecting genotypes strategically with superior freeze tolerance and raising mowing heights in the fall acclimation process.

Open Access