Search Results
Iris hollandica `Blue Magic' was treated with deionazed water as a control, 3% sucrose (Suc), 3% sucrose plus 0.4 mm silver thiosulphate (Suc+STS), 3% sucrose plus 200 mg·L-1 8-hydroxyquinoline sulphate (Suc+HQS) and 3% sucrose plus 100 mg·L-1 benzyl amino-purine (Suc+BA) for 4hrs and then transferred to tap water. The vase life treated with Suc+BA was extended 4 days longer than that of control. The treatment Suc+STS or Suc+HQS did not improve vase life. The amounts of water uptake and transpiration by all treatments decreased after harvest, but those values were higher in cut iris treated with Suc+BA than in those with control. Cut flowers treated with by Suc+BA markedly improved water balance, comparing with control which was quickly changed to minus value. Anthocyanin content in petals of cut flower treated with Suc+BA was 3.5 fold higher than that of control. The treatment by Suc+BA delayed discoloration in petals and senescence of cut Iris. Peroxidase (POD) activities of all treatments were reached maximum at 4th day after treatment and decreased thereafter. POD activity was highest when the cut iris was treated with Suc+BA. These results show that the use of Suc+BA is most effective treatment for improving the vase life and quality of cut Iris flowers.
Anatomical observations of anthocyanin rich cells in `Fuji' apple skins were carried out by light microscopy and electron microscopy. Apple skins with fully developed red color had more layers of anthocyanin-containing epidermal cells than those of green skins. The density of anthocyanin was high in cells of the outer layer of the fruit skins and gradually decreased inward to the flesh. Anthocyanins were frequently found in clusters or in agglomerations that were round in the epidermal cells of the red skins. They accumulated in the inner side of developed vacuoles. Transmission and scanning electron microscopy revealed that the shapes of anthocyanins were cluster style, indeterminable forms, or complete spheres. Anthocyanin seemed to be synthesized around the tonoplast and condensed on the inward side of the vacuole. There was no distinct envelope membrane on the anthocyanin granule in the vacuoles of apple skin cells.
This study was conducted to overcome the problems occurring in soil cultured Sandersonia, such as secondary tuber formation, tuber russeting, browning and surface cracking. For the tuber production, soilless culture medium compositions (peatmoss, perlite, cocopeat) and harvesting times [4, 6, 8, 10, and 12 weeks after flowering time (WAF)] were compared. The mother tubers were planted and grown in a plastic box (40 × 60 × 23 cm) under a PE film house with shading in summer season. The tuber number and weight were higher in peatmoss-based media of peatmoss, 1 peatmoss: 1 perlite, and 2 peatmoss: 1 perlite (by volume) than in the other media. Particularly, the plant height and the numbers of leaf and flower were also higher. The contents of total nitrogen and phosphorus in leaves were lower when the tubers were grown in perlite. Leaf area index per plant reached the maximum at 8 WAF and decreased thereafter. The optimal harvesting time for tuber production was 8-10 WAF.