Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Kellie Walters x
  • HortTechnology x
Clear All Modify Search

Basil (Ocimum sp.) is the most popular fresh culinary herb. However, there is a lack of data characterizing the effect of hydroponic production systems and cultivars on the yield of hydroponically produced basil. Our objectives were to quantify productivity and characterize growth of basil cultivars grown in two hydroponic production systems. Thirty-five basil cultivars, including selections of sweet basil (O. basilicum), holy basil (O. tenuiflorum), and lemon basil (O. ×citriodorum and O. basilicum) were chosen. Seedlings were transplanted into nutrient film technique (NFT) or deep flow technique (DFT) systems and grown for 3 weeks. There was no interaction between basil cultivars and hydroponic production system. Fresh weight of plants grown in DFT systems was 2.6 g greater compared with plants grown in NFT systems. Basil cultivars differed greatly in fresh weight. In general, holy, lemon, and sweet basil cultivars produce moderate to high fresh weight, but vary greatly. Dissimilarly, bush (O. basilicum var. minimum), cinnamon (O. basilicum), large-leaf (O. basilicum), and thai basils (O. basilicum var. thyrisiflorum) produce moderate fresh weight and purple basil (O. basilicum) cultivars produce the least fresh weight. The yield of basil seems to be affected more by cultivar selection than hydroponic production system. Therefore, hydroponic basil producers should select basil cultivars based on flavor and yield, while hydroponic systems should be selected based on operational preferences.

Free access

Our objective was to quantify the efficacy of foliar plant growth retardant applications on plant height and time to flower of seed-propagated new guinea impatiens (Impatiens hawkeri) produced in packs and flats. ‘Divine Cherry Red’, ‘Divine Scarlet Bronze Leaf’, and ‘Divine White Blush’ seedlings were planted in 1801-cell packs. Seven days after planting, deionized water (control) or solutions containing ancymidol (15 to 60 mg·L−1), chlormequat chloride (750 to 3000 mg·L−1), daminozide (1250 to 5000 mg·L−1), ethephon (250 to 1000 mg·L−1), flurprimidol (10 to 40 mg·L−1), paclobutrazol (10 to 40 mg·L−1), or uniconazole (5 to 20 mg·L−1) were applied to seedlings. A second experiment was performed with the same cultivars quantifying the growth and development in response to a broader range of flurprimidol or paclobutrazol (5 to 40 mg·L−1) or uniconazole (2.5 to 20 mg·L−1) sprays. Plant height was measured 7 weeks after planting. For Expt. 1, ancymidol, chlormequat chloride, and daminozide had little to no impact on stem elongation. However, flurprimidol, paclobutrazol, and uniconazole suppressed height at flowering of all three cultivars. In Expt. 2, plant height with concentrations flurprimidol, paclobutrazol, or uniconazole up to 27 to 30, 20 to 30, or 4 to 5 mg·L−1, respectively, depending on the cultivar. Five to 20 mg·L−1 flurprimidol or paclobutrazol, or < 2.5 mg·L−1 uniconazole may be used to control stem elongation of seed-propagated new guinea impatiens for production in flats.

Full access

Our objective was to quantify the efficacy of different plant growth regulator (PGR) substrate drenches on growth of lantana (Lantana camara) cultivars varying in growth habit. Rooted ‘Little Lucky Peach Glow’, ‘Lucky Peach’, and ‘Landmark Peach Sunrise’ lantana cuttings were individually planted into 4-inch-diameter containers filled with a commercial, soilless growing substrate. Fourteen days after planting, solutions containing 0 (control), 0.5, 1, 2, or 4 mg·L−1 ancymidol, flurprimidol, paclobutrazol, or uniconazole were applied to the surface of the growing substrate. Six weeks after applying PGR drenches, data were collected. The growth index (GI), an integrated measurement of plant size incorporating the height and widths of plants, was calculated. There was variation in the GI among the control plants, reflecting variation among cultivars within the species. In addition, we measured variation in activity among the different PGRs applied. Across the concentrations applied, ancymidol generally had the lowest activity across the four PGRs. For example, drenches containing 4 mg·L−1 ancymidol resulted in plants that were similar to plants treated with 0.5 to 1 mg·L−1 flurprimidol or uniconazole or 2 mg·L−1 paclobutrazol for ‘Lucky Peach’ lantana. Across all cultivars, flurprimidol and uniconazole had the greatest activity in suppressing plant height, width, and GI. Substrate drenches containing flurprimidol, paclobutrazol, or uniconazole are useful to control size of lantana produced in containers, though the recommended concentration depends on the active ingredient and the growth habit of cultivars being treated.

Full access

Sowing density is a key management practice influencing productivity and quality of leafy greens and culinary herbs grown in controlled environments. However, research-based information on optimal density is limited for many culinary herbs. This greenhouse study aimed to quantify sowing density impacts on biomass output, individual plant growth, and morphological traits in hydroponically produced ‘Giant of Italy’ parsley (Petroselinum crispum), ‘Santo’ cilantro (Coriandrum sativum), and sage (Salvia officinalis). Seedlings were grown in phenolic foam cubes with 1, 5, 10, 15, or 20 seeds per cell, transplanted into an ebb-and-flow hydroponic system in a glass-glazed greenhouse with 23 °C target average daily temperature, 16-hour photoperiod, a target daily light integral of 13 mol·m−2·d−1, and harvested at 16 to 28 d after transplanting depending on species. ‘Giant of Italy’ parsley and ‘Santo’ cilantro fresh weight per cell increased quadratically by 274% (57.3 g) and 305% (19 g), respectively, as sowing density increased from 1 to 15 seeds per cell, then plateaued as density further increased. Sage fresh weight plateaued at 10 seeds per cell with an increase of 225% (29.2 g) compared with 1 seed per cell. Cilantro and sage dry weight per cell plateaued at 14 and 8 seeds per cell, respectively, and parsley dry weight quadratically increased as sowing density rose up to 20 seeds per cell. Although fresh and dry weight increased, individual plant height, stem diameter, and individual plant dry weight exhibited linear or quadratic declines as sowing density increased, indicating higher sowing densities restricted individual plant growth. In summary, as sowing density increased, fresh and dry weight per cell generally increased but individual plant quality decreased. For the greatest fresh and dry weight, 20, 18, and 10 seeds per cell should be sown for parsley, cilantro, and sage, respectively. However, to balance fresh weight and crop quality, our results suggest sowing density (seeds per cell) targets of 16 seeds for parsley, 18 seeds for cilantro, and 10 seeds for sage.

Open Access