Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: K.D. Patten x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

Abstract

When the water content of cherries (Prunus avium L.) was increased by more than 5% of the initial weight following immersion in distilled water, the force to bioyield (FBY) and the maximum slope of a compression curve (slope 2) decreased, and impact-induced surface pitting increased. When water content of cherries was decreased by more than 2% of the initial weight following dehydration, FBY increased and the minimum slope of a compression curve (slope 1) and impact-induced surface pitting decreased. Force to bioyield and slope 1 and 2 increased with an increase in fruit turgor potential (ψp) and a decrease in fruit osmotic potential (ψπ). There was a slight positive correlation between fruit water potential (ψ) and FBY and slope 1. Fruit texture changed diurnally, corresponding to changes in fruit ψ. This diurnal texture change, however, was largely a response to diurnal differences in fruit temperature.

Open Access

Abstract

The resistance of sweet cherries to compression damage as measured by the fruit firmness variables, [force to bioyield (FBY), slope of a compression curve, and maximum and residual forces of a compression-relaxation curve] decreased linearly with increasing fruit temperture. The incidence of impact-induced surface pitting decreased linearly as fruit temperature increased. The rate of decrease in impact damage per degree increase in fruit temperature was a function of the cultivar, contact surface, and drop height.

Open Access

Abstract

Limbs of ‘Bing’ cherries (Prunus avium L.) were shaded with neutral density shade structures to reduce light levels to 10–15% full sun. Three placement times were used: a) petal fall to pit hardening (PF-PH), b) pit hardening to harvest (PH-H), and c) petal fall to harvest (PF-H). Shaded limbs had reduced fruit set, and fruit color and soluble solids were less in comparison to fruit from unshaded limbs. Fruit from shaded limbs were smaller than unshaded for the first 2 harvests, but for the last 2 harvest dates, fruit shaded from PF-PH or PF-H were larger. The time to reach dark red maturity was delayed 5 days by shading from PF-PH or PH-H and 12 days by shading from PF-H. When compared at equal color maturities, fruit from unshaded limbs were firmer than those from shaded limbs. In a study using natural shade, the relationship of fruit color and soluble solids to the percentage of full sun (FS) was logarithmic, with both variables dramatically reduced at light levels below 10–15% FS. Neither fruit weight nor firmness were related to the percentage of FS.

Open Access

Abstract

Sweet cherry (Prunus avium L.) flower and pistil weight at anthesis decreased at late bloom times. Fruit from early-opening flowers remained larger through harvest and developed higher soluble solids and color than fruit from flowers than opened later. Time of anthesis was delayed and fruit color and soluble solids decreased linearly as flower or fruit location progressed basipetally on one- and 2-year-old wood.

Open Access

Abstract

‘Tifblue’ rabbiteye blueberry (Vaccinium ashei Reade) plants were grown for 3 years under a sodic irrigation regimen. Mulched and non-mulched plants were irrigated by one of three methods: one drip emitter at the base of the plant, two drip emitters on either side of the plant, or low-volume spray emitter (LVSE). There was a mulch × irrigation treatment interaction. Mulch increased the growth of drip-irrigated plants but not LVSE-irrigated plants. Salt-induced leaf chlorosis and necrosis was only evident on plants with no mulch and irrigated with two emitters. Under mulched soil, K, Na, Mg, Cl, electrical conductivity (ECe), and Na adsorption ratio (SAR) levels were several times lower and uniform throughout the soil profile compared to the non-mulched treatments. Maximum root-zone salinity was 3.7 dS·m−1 for two emitters without mulch and a minimum of 0.5 dS·m−1 for one emitter with mulch.

Open Access

Abstract

The response of rabbiteye blueberry plants (Vaccinium ashei Reade) to rates and modifications of deep well water (pH 8.7) containing 0.695 dS·m-1 electrical conductivity (EC), a sodium adsorption ratio (SAR) of 29.7, and a bicarbonate concentration of 7.89 meq·liter-1 was compared to plants irrigated with rain and surface waters applied to 3 soils in a glasshouse-container study. Fresh weight increase and root fresh and dry weight were greater on plants irrigated with rainwater or pond water compared to plants irrigated with different rates of deep well water, or deep well water modified by the addition of gypsum or acidified with H2S04. Fresh weight increase, root fresh and dry weight, leaf fresh weight, and top:root ratios were higher on a loamy sand soil than on sandy loam or clay loam soils. Plant weight gain was positively correated with the percentage of sand, and negatively correlated with the percentage of clay and saturation-extract SAR. An increase in soil pH resulted from irrigation with deep well water which, along with its modifications, resulted in increased leaf Na and decreased leaf Ca and Mn, compared to rain or surface-water irrigations, which slightly lowered soil pH.

Open Access