Search Results
You are looking at 1 - 8 of 8 items for :
- Author or Editor: Jun Qin x
- HortScience x
Little has been done with respect to breeding for salt-tolerant cowpea (Vigna unguiculata) cultivars despite of salt stress being a growing threat to cowpea production. Seedling stage is one the most susceptible stages to salt stress in cowpea. Establishing a streamlined methodology for rapidly screening a large number of genotypes will significantly contribute toward enhancing cowpea breeding for salt tolerance. Therefore, the objective of this study was to establish and validate a simple approach for salt tolerance evaluation in cowpea seedlings. A total of 30 genotypes including two controls (PI582468, a salt-tolerant genotype, and PI255774, a salt-sensitive genotype) were greenhouse-grown under 0 mm and 200 mm NaCl. A total of 14 above-ground traits were evaluated. Results revealed: (1) significant differences were observed in average number of dead plants per pot, leaf injury scores, relative salt tolerance (RST) for chlorophyll, plant height, and leaf and stem biomass among the 30 genotypes; (2) all PI255774 plants were completely dead, whereas those of PI582438 were fully green after 2 weeks of salt stress, which validated this methodology; (3) RST for chlorophyll content was highly correlated with number of dead plants and leaf injury scores; (4) RST for leaf biomass was moderately correlated with number of dead plants and leaf injury scores; and (5) RST in plant height was poorly correlated with number of dead plants and leaf injury scores Therefore, less number of dead plants per pot, high chlorophyll content, and less leaf injury scores were good criteria for salt tolerance evaluation in cowpea. This study provided a simple methodology and suggested straightforward criteria to evaluate salt tolerance at seedling stage in cowpea.
Rhododendron delavayi Franch. is an important ornamental plant and often plays a role in natural hybridization with other sympatric species in Rhododendron subgenus Hymenanthes. Fifteen microsatellite loci were developed and characterized in this species. The average allele number of these microsatellites was four per locus, ranging from three to six. The ranges of expected (HE ) and observed (HO ) heterozygosities were 0.0365 to 0.7091 and 0.0263 to 0.9512, respectively. Cross-species amplification in R. agastum and R. decorum showed that a subset of these markers holds promise for congeneric species study. These sets of markers are potentially useful to investigate the genetic structure and gene flow of R. delavayi and other congeneric species.
Impacts of drought stress on crop production can significantly impair farmer’s revenue, hence adversely impacting the gross national product growth. For cowpea [Vigna unguiculata (L.) Walp.], which is a legume of economic importance, effects of drought at early vegetative growth could lead to substantial yield losses. However, little has been done with respect to breeding for cowpea cultivars withstanding drought at early vegetative growth. In addition, previous investigations have focused on how plant morphology and root architecture can confer drought tolerance in cowpea, which is not sufficient in efforts to unravel unknown drought tolerance–related genetic mechanisms, potentially of great importance in breeding, and not pertaining to either plant morphology or root architecture. Therefore, the objective of this study was to evaluate aboveground drought-related traits of cowpea genotypes at seedling stage. A total of 30 cowpea genotypes were greenhouse grown within boxes and the experimental design was completely randomized with three replicates. Drought stress was imposed for 28 days. Data on a total of 17 aboveground-related traits were collected. Results showed the following: 1) a large variation in these traits was found among the genotypes; 2) more trifoliate wilt/chlorosis tolerance but more unifoliate wilt/chlorosis susceptible were observed; 3) delayed senescence was related to the ability of maintaining a balanced chlorophyll content in both unifoliate and trifoliate leaves; and 4) the genotypes PI293469, PI349674, and PI293568 were found to be slow wilting and drought tolerant. These results could contribute to advancing breeding programs for drought tolerance in cowpea.
Cowpea [Vigna unguiculata (L.) Walp] is an annual legume crop grown worldwide to provide protein for human consumption and animal feed. The objective of this research was to evaluate the seed protein content in U.S. Department of Agriculture (USDA) cowpea germplasm for use in cowpea breeding programs. A field experiment was conducted with a randomized complete block design (RCBD) with three duplications in two locations, Fayetteville and Alma, in Arkansas, United States. A total of 173 USDA cowpea accessions were evaluated with the Elementar Rapid N analyzer III for their seed protein contents. The results showed that there was a wide range of seed protein content among the 173 cowpea genotypes, ranging from 22.8% to 28.9% with an average of 25.6%. The broad-sense heritability for seed protein among the 173 cowpea genotypes was 50.8%, indicating that seed protein content was inheritable and can be selected in breeding processing. The top five cowpea accessions with the highest seed protein contents were USDA accession PI 662992 originally collected from Florida (28.9%), PI 601085 from Minnesota (28.5%), and PI 255765 and PI 255774 from Nigeria and PI 666253 from Arkansas (28.4% each). PI 339587 from South Africa had the lowest protein content with 21.8%. The were also significant differences in seed protein contents observed among different seedcoat colors; the accessions with cream color exhibited higher protein content (27.2%) than others. This research could provide information for breeders to develop cowpea cultivars with higher seed protein content in a cowpea breeding program.
Although atmospheric evaporative demand mediates water flow and constrains water-use efficiency (WUE) to a large extent, the potential to reduce irrigation demand and improve water productivity by regulating the atmospheric water driving force is highly uncertain. To bridge this gap, water transport in combination with plant productivity was examined in cucumber (Cucumis sativus L.) grown at contrasting evaporative demand gradients. Reducing the excessive vapor pressure deficit (VPD) decreased the water flow rate, which reduced irrigation consumption significantly by 16.4%. Reducing excessive evaporative demand moderated plant water stress, as leaf dehydration, hydraulic limitation, and excessive negative water potential were prevented by maintaining water balance in the low-VPD treatment. The moderation of plant water stress by reducing evaporative demand sustained stomatal function for photosynthesis and plant growth, which increased substantially fruit yield and shoot biomass by 20.1% and 18.4%, respectively. From a physiological perspective, a reduction in irrigation demand and an improvement in plant productivity were achieved concomitantly by reducing the excessive VPD. Consequently, WUE based on the criteria of plant biomass and fruit yield was increased significantly by 43.1% and 40.5%, respectively.
Previous investigations showed that accumulations of Na+ and Cl− in leaves resulted in reductions in chlorophyll content, thereby affecting photosynthesis. Understanding how chlorophyll content evolves over time will help plant breeders to select cowpea genotypes with better tolerance to salinity by allowing them to choose those with more stable chlorophyll content under salt stress. The objective of this study was to assess how the chlorophyll content of cowpea genotypes changed over the course of 24 d of salt stress at the seedling stage. A total of 24 cowpea genotypes with different salt responses were used in this study. The experiment used a split-plot design with salt treatment as the main plot and cowpea genotypes as the subplot. In the main plot, there were two salt treatments: 0 mm (ionized water) and 200 mm NaCl. In the subplot, the cowpea genotypes were arranged as a completely randomized design with three replicates per genotype. The results revealed that: a1) the time × genotype interaction was significant under conditions with and without salt; 2) chlorophyll content slowly decreased in the salt-tolerant genotypes; 3) chlorophyll content slightly increased on day 6 and day 9 of salt stress in both moderate and sensitive genotypes, but it decreased at a faster rate than in the salt-tolerant genotypes; and 4) salt-sensitive genotypes were completely dead on day 24 of salt stress, whereas the salt-tolerant genotypes were able to maintain a significant amount of chlorophyll content. These results can be used to advance breeding programs for salt tolerance in cowpea.
Hydrogen sulfide (H2S) has been proven to be a multifunctional signaling molecule in plants. In this study, we attempted to explore the effects of H2S on the climacteric fruit tomato during postharvest storage. H2S fumigation for 1 d was found to delay the peel color transition from green to red and decreased fruit firmness induced by ethylene. Further investigation showed that H2S fumigation downregulated the activities and gene expressions of cell wall–degrading enzymes pectin lyase (PL), polygalacturonase (PG), and cellulase. Furthermore, H2S fumigation downregulated the expression of ethylene biosynthesis genes SlACS2 and SlACS3. Ethylene treatment for 1 d was found to induce the expression of SlACO1, SlACO3, and SlACO4 genes, whereas the increase was significantly inhibited by H2S combined with ethylene. Furthermore, H2S decreased the transcript accumulation of ethylene receptor genes SlETR5 and SlETR6 and ethylene transcription factors SlCRF2 and SlERF2. The correlation analysis suggested that the fruit firmness was negatively correlated with ethylene biosynthesis and signaling pathway. The current study showed that exogenous H2S could inhibit the synthesis of endogenous ethylene and regulate ethylene signal transduction, thereby delaying fruit softening and the ripening process of tomato fruit during postharvest storage.