Search Results

You are looking at 1 - 5 of 5 items for :

  • Author or Editor: Julia Reekie* x
  • HortScience x
Clear All Modify Search

In northern regions, strawberry nursery plants are often dug in the late fall, packed and stored for winter, and shipped to markets in the early spring. Success depends on identifying when plants are dormant and can be safely stored. Beginning on 11 Oct., plants of Kent and Veestar were dug at weekly intervals from three fields in the Annapolis Valley, N.S., Canada. At each digging date root respiration was measured at 5, 10, 20 and 30°C. Six “first daughter” plants of each cultivar were wrapped in plastic and placed in ≈1.5°C refrigerated storage. Other plants were separated into roots and leaves for carbohydrate analysis. Fall temperatures were relatively mild with 417 crown chilling hours (8°C base) accumulated to 7 Nov. Only those plants dug on 11 Oct. did not survive when planted to the field on 1, June but vigor (number of daughters/runners) improved for plants dug later in the fall. For Kent, vigor increased through the last digging date (5 Dec.), but for Veestar, vigor did not change after 7 Nov. Early dug plants had relatively high rates of root respiration, low concentrations of leaf and root glucose, fructose, sucrose, and raffinose and high leaf starch, and low root starch concentrations. Most leaf sugar concentrations increased rapidly after 7 Nov., and root starch reached a maximum at the same date. Leaf and root carbohydrate concentrations were correlated with poststorage field vigor and may reflect the degree of plant dormancy at time of digging.

Free access

Our previous work on modifying strawberry plant morphology used either mowing to remove the leaf laminas and part of the petioles on `Camarosa', or a new reduced-risk gibberellin synthesis inhibitor, Prohexadione-Ca (ProCa), to restrict cell elongation in `Sweet Charlie'. These early studies showed promising results in acheiving desirable plant size and increasing fruit yield in annual hill plasticulture. Therefore, in the growing seasons of 2001 and 2002, we used `Camarosa' to explore the possibility of combining mowing and ProCa as a means of modifying strawberry transplant morphology in the nurseries, and studied its effect on fruit production in annual hill plasticulture. Plants were mowed and treated with 62.5 μL·L-1 of ProCa in a nursery field in Nova Scotia (45°26'N, 63°27'W). Treatments consisted of either mowing, the application of ProCa, or a combination of mowing and ProCa on one of two dates, 5 or 19 Sept. ProCa application early in the growing season had increased the production of daughter plants in the nursery. All plants were harvested in early October, and immediately transplanted in Dover, Fla. (28°00'N, 82°22'W). Fruits were collected twice weekly from late November to February or March. At time of harvest, both mowing and ProCa reduced plant height and total leaf area; plants which were treated with ProCa and mowed were the shortest. On average, treated plants had higher fruit yield as compared to untreated plants. In 2001, early fruit production in December was increased significantly in treated plants.

Free access

Bare-root transplants received from high latitude nurseries for Florida production have limited root systems, very long petioles and wilt soon after planting. Further dessication occurs when leaves come in contact with black plastic mulch used in the annual production system. Conventional irrigation practices for the establishment of bare-root transplants of strawberry consist of overhead water application for at least 8 hours/day for 10-14 days after planting. Plant growth regulators (PGRs) have been used to modify the growth characteristics of many plants species. A split-block experiment was implemented at the GCREC-Dover, Dover Fla., to determine the effect of the use Prohexidione-Ca (PC) and IBA [(indole-3) butyric acid] on growth, yield and establishment of strawberry. Main blocks consisted of over head establishment irrigation for 4, 8, and 12 days, and sub-plots consisted of treatments of PC applied in the nursery at a rate of 62.5 mg·L-1 2, 4, or 6 weeks before digging, PC applied in the nursery at 31.25 mg·L-1 2 weeks before digging, a root dip of transplants in 100 mg·L-1 IBA just prior to transplanting. The experiment was conducted for four growing seasons. Data were recorded for marketable yield, number of marketable berries (>10g), and disease incidence. Significant differences were detected for duration of establishment irrigation and growth regulator treatment. No interaction was shown between establishment irrigation and growth regulator treatment.

Free access

There is an increasing interest for use of cover crops in orchards; however, the species that are most likely to be successfully implemented and their impact on yield and soil productivity have not been fully explored under Maritimes climate. This study investigated the effect of various cover crops treatments on organic apple (Malus domestica Borkh cv. Honeycrisp) yield and leaf nutrient concentrations in Nova Scotia over 3 years. Various cover crop mixtures including legumes, cereals, and grasses were planted using a modified Swiss Sandwich System (SSS). The cover crops treatments did not affect apple yield. In 2012, the input of biomass to the soil was 89% and 144% greater for alfalfa (ALF) and other cover crop treatments than unseeded (CON) treatment, respectively. The pea, oats, vetch mixture (POVM) contributed 24% higher biomass N to soil compared with average of other cover crops in 2012. Soil available K concentration in the tilled strip was increased in the 3rd year of the study compared with the initial values across cover crop treatments. The red clover oats mixture (RCOM), POVM, and Triple Mix (TM) treatments appeared to add the greatest amount of available K to the soil among treatments. The CON, TM, and ALF treatments resulted in higher leaf Mn concentration in only 2012 and CON, sweet clover and oats mixture (SCOM), and ALF resulted in higher leaf P concentration in 2014, compared with other treatments. Cover crops did not compete with apple trees and their most beneficial and consistent contribution was to total C, total N, and K input to the soil.

Free access

Seasonal patterns of CO2 assimilation (ACO2), leaf water potential (ψ1) and stomatal conductance (g1) were studied in three clones (`Augusta', `Brunswick', and `Chignecto') of lowbush blueberry (Vaccinium angustifolium Ait.) over two growing seasons. Plants were managed in a 2-year cycle of fruiting (year 1) and burn-prune (year 2). In the fruiting year, ACO2 was lowest in mid-June and early September. Rates peaked between 10 and 31 July and declined after fruit removal in late August. Compared with the fruiting year, ACO2 in the prune year was between 50% and 130% higher in the early season, and between 80% and 300% higher in mid-September. In both years, however, mid-season maximum ACO2 for each clone was between 9 and 10 μmol·m–2·s–1CO2. Assimilation of CO2 increased with increasing photosynthetic photon flux (PPF) to between 500 and 600 μmol·s–1·m–2 in `Augusta' and `Brunswick', and to between 700 and 800 μmol·s–1·m–2 in `Chignecto'. Midday ψ1 was generally lower in the prune year than in the fruiting year, reflecting year-to-year differences in soil water content. Stomatal conductance (g1), however, was generally higher in the prune year than in the fruiting year over similar vapor pressure deficit (VPD) ranges, especially in June and September when prune year g1 was often twice that observed in the fruiting year. In the fruiting year, g1 declined through the day in response to increasing VPD in June, but was quite constant in mid-season. It tended to be higher in `Augusta' than in the other two clones. Stomatal closure imposes limitations on ACO2 in lowbush blueberries, but not all seasonal change in C-assimilative capacity can be explained by changes in g1.

Free access