Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Juan L. Silva x
  • HortTechnology x
Clear All Modify Search

Pecans [Carya illinoinensis (Wangenh. C.) Koch] were harvested weekly for 9 and 7 weeks until normal harvest time during 1986 and 1987, respectively. Kernels were tested for chemical, physical, and sensory properties. Moisture decreased from 13% at initial harvest time to 4% to 6% by normal harvest. Free fatty acids decreased from 0.5% to 0.2% by the third week before normal harvest. Tannins fluctuated, but averaged about 0.8%. Hue angle remained constant from the fourth week to normal harvest. Shear force increased from 90 to 135 N by the second week before normal harvest. Pecans can be harvested about 2 weeks before normal harvest without significant quality deficiencies.

Full access

This work is the result of 3 years of collaborative research between Mississippi State Univ. and New Mexico State Univ. Physical, chemical, and sensory characteristics were studied to assess eating quality of popular New Mexico pecan (Carya illinoinensis) cultivars. The force and energy necessary to break (shear) pecan nuts, and Hunter `a' and hue angle values varied with harvest year and cultivar. All other traits, including sensory evaluation results, varied only with cultivar. `Ideal' was of light color, small size, and not as firm as the others, while `Burkett' was soft and slightly rancid. `Wichita' was the cultivar rated best by panelists, despite its slightly darker color. `Western Schley' and `Salopek' were also acceptable, although not as acceptable as `Wichita'.

Full access

A traditional dairy-based frozen dessert (ice cream) was developed with three levels of sweetpotato (Ipomoea batatas) puree [20%, 30%, and 40% (by weight)] to determine the impact of sweetpotato content on product functionality, nutritional content, and sensory characteristics. Increased sweetpotato puree resulted in increased orange color, flavor intensity, and sweetpotato flavor, but 40% puree proved difficult to incorporate into the mixture. Additionally, nondairy frozen desserts containing 30% sweetpotato puree were compared with a milk-based control in which all ingredients were the same except that milk was replaced with soy (Glycine max) and almond (Prunus dulcis) milk. Consumer acceptability tests were conducted with panelists at Mississippi State University (n = 101) and in Pontotoc, MS (n = 43). Panelists in Pontotoc rated the overall acceptability of all three frozen desserts the same, but they preferred the appearance of the milk-based frozen dessert over that of soy- and almond-based milk alternatives. According to the panelists at Mississippi State, the milk-based frozen dessert had greater overall acceptability and aroma than the almond-based dessert and a preferential texture and appearance compared with the soy- and almond-based desserts. Milk-, soy-, and almond-based frozen desserts were rated as “slightly liked” or better by 92%, 80%, and 69% of the panelists, respectively.

Open Access

Two pot experiments were conducted to evaluate noncomposted hair byproduct as a nutrient source for container-grown crops. Lettuce (Lactuca sativa ‘Green Leaves’) and wormwood (Artemisia annua ‘Artemis’) were grown in a commercial growth substrate amended with 0%, 2.5%, 5%, or 10% by weight hair waste or controlled-release fertilizer (CRF) or were watered with a complete water-soluble fertilizer (WSF). After harvest, yellow poppy (Glaucium flavum) was grown in the pots and substrate that previously grew wormwood, and feverfew (Tanacetum parthenium) was grown in the pots and substrate previously containing lettuce. The 5% hair treatment and the commercial fertilizer rates were calculated to provide the same amount of nitrogen (N) during production of lettuce and wormwood based on 50% N availability from hair. Yields in treatments containing hair or CRF or watered with WSF were higher than in the untreated control. The highest lettuce and wormwood yields occurred with CRF followed by WSF and 5% and 10% hair treatments. However, yield of yellow poppy was higher in the hair treatments than yields in inorganic fertilizer treatments or in the untreated control. Feverfew yields did not differ among fertility treatments, but yields in fertility treatments were higher than those of control. Lettuce leaf moisture content was lower, but soluble solids were higher in plants in the hair waste treatments than in the WSF or CRF treatments. Total phenolics in lettuce did not differ among treatments. Total aerobic and coliforms plate counts were similar for all samples, averaging 6.0 and 1.2 log cfu/g, respectively. Results from this study suggest that noncomposted hair waste could be used as a nutrient source for container-grown plants. Hair waste should not be used as a single nutrient source for fast-growing plants because of the time needed for degradation of the hair before release of plant nutrients.

Full access