Search Results

You are looking at 1 - 10 of 12 items for :

  • Author or Editor: Joyce Latimer x
  • HortTechnology x
Clear All Modify Search

Mechanical conditioning is an excellent means of regulating the growth of vegetable transplants and some ornamental bedding plants. It improves the stature, appearance, handling characteristics, and overall quality of treated plants. The application procedures reported for transplants have included wind, shaking, brushing, and more recently impedance; all of which result in physical displacement of the growing points. Brushing has been most commonly studied for mechanical conditioning in high density transplant production. Brushing reduces plant height, increases stem and petiole strength, improves insect resistance in the greenhouse, tends to improve stress tolerance and enhance stand establishment in the field, and has no effect on crop yield. Although growers using the technique have been very pleased with the quality of brushed vegetable transplants, widespread commercial application of brushing is limited by a lack of automation.

Full access

Brushing 2-week-old `Sunny' tomato (Lycopersicon esculentum Mill.) seedlings, grown in a commercial production greenhouse, for a period of 5 weeks reduced transplant growth and improved plant appearance. Brushing reduced stem length 37% and leaf area 31% relative to nontreated control plants. Plants were darker green in color, stockier, easier to handle, and tougher (exhibited less breakage) than nontreated plants.

Free access

A brushing system for vegetable transplants that is adjustable, easy to use, and provides uniform brushing action was designed and constructed. Using this system, the height of several species and cultivars of vegetable transplants was reduced 15% to 50%. Quality and uniformity also were improved, and edge effects on growth were reduced.

Full access

A survey was conducted in 2000-01 to provide a comprehensive description of Virginia's commercial greenhouse industry. A total of 274 responses were analyzed. Responses were categorized based on the amount of heated greenhouse space: small, medium, large, or other (including part-time). The survey included questions about growing space, number of employees, education and experience of respondent, crops grown, gross receipts, and target markets. Seventy-five percent of the respondents were owners or owners/growers and respondents reported an average of 15 years experience. Most greenhouse operations were classified as small or less than 10,000 ft2 (929.0 m2). A wide variety of crops were reported, with more than 50% growing bedding plants and nearly 50% growing herbaceous perennials in the greenhouse. Market outlets were about equally divided between wholesale and retail.

Full access

This report summarizes responses to a survey of Virginia's commercial greenhouse industry, conducted in 2000-01. The survey included questions about interests and needs of growers to assist Virginia Tech Horticulture faculty and staff in planning educational and research programming. Respondents were asked about current cultural practices, future plans for automation and technology, and impact of issues facing the greenhouse industry such as regulations and labor. The 273 responses were categorized based on the amount of heated greenhouse space: small, medium, large, or other (including part-time). Following analysis of the responses, focus groups were conducted across Virginia to further discuss issues raised in the survey.

Full access

A survey, focusing on the use of irrigation and fertilization best management practices (BMPs), was designed and released to Virginia nursery and greenhouse growers. The objectives of the survey were to determine the most widely used BMPs, assess the reasons for their use, and identify barriers to BMP adoption. The survey was distributed in person, via e-mail attachment, or link to 357 Virginia growers in 2016 with 60 respondents. Survey results demonstrate that the most widely used BMPs in Virginia included irrigation scheduling, integrated pest management (IPM) implementation, altering irrigation practices to optimize irrigation efficiency, controlled-release fertilizer (CRF) use, and plant need–based watering. Respondents selected environmental/resource savings as one of the most cited reasons behind BMP use for water, fertilizer, and runoff management. Cost was the most cited barrier to BMP adoption for all BMPs. Fertilizer management BMP implementation was primarily an economic decision. The value of determining the most widely used BMPs and impediments to BMP adoption is that we can 1) communicate this information to growers who currently do not employ BMPs to encourage BMP adoption and 2) subsequently inform the regulatory community of BMP use. Increased BMP use can boost the potential for mitigation of agricultural nutrient and sediment runoff into impaired waterways, including the Chesapeake Bay, and help growers increase efficiency of operation inputs, such as water and fertilizer resources, while potentially saving money.

Full access

A survey indicated that the landscape maintenance and lawn care industry of the Atlanta metro area was localized in densely populated counties with a high concentration of commercial activity and residential housing. A relatively young age and limited size of most of the firms suggested a lack of barriers to entering the industry, which was supported by gross sales and equipment owned by surveyed companies. Most firms generated no more than $100,000 in sales in 1993 and owned equipment valued at less than $25,000. Most residential accounts were under 10 acres.

Full access

A pine tree substrate (PTS), produced by grinding loblolly pine trees (Pinus taeda), offers potential as a viable container substrate for greenhouse crops, but a better understanding of the fertilizer requirements for plant growth in PTS is needed. The purpose of this research was to determine the comparative fertilizer requirements for chrysanthemum (Chrysanthemum ×grandiflora ‘Baton Rouge’) grown in PTS or a commercial peat-lite (PL) substrate. The PTS was prepared by grinding coarse (1-inch × 1-inch × 0.5-inch) pine chips from debarked loblolly pine logs in a hammer mill fitted with 3/16-inch screen. The PL substrate composed of 45% peat, 15% perlite, 15% vermiculite, and 25% bark was used for comparative purposes. Rooted chrysanthemum cuttings were potted in each of the substrates on 15 Oct. 2005 and 12 Apr. 2006 and were glasshouse grown. Plants were fertilized with varying rates of a 20N–4.4P–16.6K-soluble fertilizer ranging from 50 to 400 mg·L−1 nitrogen (N) with each irrigation. Plant dry weights and extractable substrate nutrient levels were determined. In 2005 and 2006, it required about 100 mg·L−1 N more fertilizer for PTS compared to PL to obtain comparable growth. At any particular fertilizer level, substrate electrical conductivity and nutrient levels were higher for PL compared to PTS accounting for the higher fertilizer requirements for PTS. Possible reasons for the lower substrate nutrients levels with PTS are increased nutrient leaching in PTS due to PTS being more porous and having a lower cation exchange capacity than PL, and increased microbial immobilization of N in PTS compared to PL. This research demonstrates that PTS can be used to grow a traditional greenhouse crop if attention is given to fertilizer requirements.

Full access

Despite the popularity of fountain grass (Pennisetum alopecuroides) as a landscape perennial, little research has been conducted on nursery management practices that maximize its overwintering survival and subsequent spring vigor in container production systems. An experiment was conducted to determine the effect of protective covers (a double layer of insulation fabric, a double layer of insulation fabric plus a single sheet of white polyethylene plastic, or no cover), fertilizer application rate (high and low), and substrate moisture content (irrigated when substrate volumetric water content (VWC) fell below 15% and 25%) on the survival rate and vigor of container-grown fountain grass: straight species fountain grass (SFG), ‘Hameln’ fountain grass (HFG), and ‘Little Bunny’ fountain grass (LBFG). Plants were overwintered in a coldframe and were evaluated for survival rate (percent that survived the winter) and vigor (visual rating scale 1 to 5) the following spring. Survival rate and vigor ratings varied among species. However, the highest survival rates (generally 75% or greater) and vigor ratings (generally 3 or greater) were in treatments that used protective covers, though there was not a clear advantage to using white polyethylene in addition to the double layer of insulation fabric. In treatments that used either of the protective covering methods and the high fertilizer application rate, 25% or less of LBFG survived and had vigor ratings of 1.3 or less. In contrast, 75% of LBFG survived when the low fertilizer rate was used in conjunction with either protective covering method. Substrate moisture content only affected the survival rates of SFG and HFG when no protective cover was used, although these survival rates were less than those with covers. These results suggest that protective covers may serve as a tool to minimize winter damage and improve crop quality for the species used in this trial. Because of the varied capacity among these cultivars to tolerate different fertilizer rates and substrate moisture contents, it is recommended that growers use the results of this study as a baseline for conducting site evaluations to determine overwintering techniques that maximize survival and vigor on their facilities.

Free access