Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Joyce C. Pennycooke x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

Previous studies of plant tolerance to low temperature have focused primarily on the cold acclimation response, the process by which plants increase their tolerance to freezing in response to low nonfreezing temperatures, while studies on the deacclimation process have been largely neglected. In some plants, cold acclimation is accompanied by an increase in raffinose family oligosaccharides (RFO). The enzyme α-galactosidase (EC breaks down RFO during deacclimation by hydrolyzing the terminal galactose moieties. Here we describe the isolation of PhGAL, an α-galactosidase cDNA clone from Petunia (Petunia ×hybrida `Mitchell'). The putative α-galactosidase cDNA has high nucleotide sequence homology (>80%) to other known plant α-galactosidases. PhGAL expression increased in response to increased temperature and there was no evidence of developmental regulation or tissue specific expression. Increases in α-galactosidase transcript 1 hour into deacclimation corresponded with increases in α-galactosidase activity and a concomitant decrease in raffinose content, suggesting that warm temperature may regulate RFO catabolism by increasing the transcription of the α-galactosidase gene. This information has potential practical applications whereby α-galactosidase may be targeted to modify endogenous raffinose accumulation in tissues needed for freezing stress tolerance.

Free access