Search Results

You are looking at 1 - 7 of 7 items for :

  • Author or Editor: Jonathan M. Frantz x
  • HortTechnology x
Clear All Modify Search

Greenhouses that are well sealed can result in carbon dioxide (CO2) drawdown and suppressed plant growth. While growers can add supplemental CO2, it is unknown how supplemental CO2 fits within the framework of sustainable crop production in greenhouses. In this study, supplemental CO2 was used in combination with reduced temperatures to evaluate the productivity of ‘Grand Rapids’ lettuce (Latuca sativa) compared with a traditionally maintained, warmer, and well-insulated greenhouse without supplemental CO2 at a commercial facility. Simulations using Virtual Grower software based on identical greenhouses compared fuel use and carbon (C) consumed because of heating and CO2 supplementation. Models were verified with measurements in a well-sealed commercial greenhouse; CO2 quickly decreased to below 300 ppm in a nonsupplemented greenhouse containing plants. Supplemental CO2 boosted total leaf number and mass of lettuce even though temperatures were maintained 3 °F lower in elevated CO2 than in the traditional management scenario. Maintaining a cooler greenhouse but adding CO2 decreased total carbon (C) consumed (by combined fuel use and CO2 supplementation) by 7% during the 3-month season that required a well-sealed greenhouse. Additionally, fuel savings because of lower temperature set points paid for the cost of adding CO2. The use of CO2 enrichment should be considered as a tool in sustainable systems when its use can counteract the plant growth and development reductions brought on by lowered temperatures.

Full access

Intensive, deep-batch, hydroponic systems that use float beds (FBs) are used extensively by the tobacco industry to produce transplants. FBs and a modified FB system with separate drying and flooding stages called ebb-and-flood (EF) beds were used to grow 12 diverse horticultural crops to maturity. Beds were filled with 570 L of water with 114 mg·L−1 N and 143 mg·L−1 K or 66 mg·L−1 N and 83 mg·L−1 K in 1994 and 1995, respectively. The EF beds were flooded for 6 hours, then drained for a 6-hour dry stage each 12 hours in 1994, and flooded for 1 hour and dried for 5 hours each 6-hour period in 1995 from May through August. Although both systems were suitable for producing Chinese water spinach (Ipomoea aquatica Forssk.—see footnote in Table 1), vegetable amaranth (Amaranthus tricolor L.), zinnia (Zinnia elegans Jacq.), and sweet basil (Ocimum basilicum L.), the EF system provided greater control over water availability and higher oxygen concentration in the root zone.

Full access

A solid-matrix-over-liquid (hybrid) growth system was developed for direct sowing of small-seeded crop species into hydroponic culture and compared for performance with a standard solid-matrix, capillary-wick hydroponic system. Seeds were sown directly onto a 3-cm (1.2-inch) deep soilless seed bed occupying 0.147 m2 (1.582 ft2) within a tray. The planted seed bed was moistened by wicking up nutrient solution through polyester wicking material from a 7.0-L (6.6-qt) reservoir just below the matrix seed bed. The hybrid system successfully grew dense [435 plants/m2 (40.4 plants/ft2)], uniform canopies of dwarf Brassica napus L. in a controlled-environment growth room. Seed yield using the hybrid system was twice that achieved with the matrix-based system. Both systems eliminated the labor needed to transplant many small seedlings from a separate nurse bed into a standard bulk liquid hydroponic system. Root-zone pH extremes caused by ion uptake and exchange between roots and unrinsed soilless media were avoided for the hybrid system by the short dwell time of roots in the thin matrix before they grew through the matrix and an intervening headspace into the bulk solution below, where pH was easily managed. Once roots grew into the bulk solution, its level was lowered, thereby cutting off further capillary wicking action and drying out the upper medium. Beyond early seedling establishment, water and nutrients were provided to the crop stand only by the bulk nutrient solution. This hybrid hydroponic system serves as a prototype for largerscale soilless growth systems that could be developed for production of smallseeded crops in greenhouses or controlled environments.

Full access

Diagnosis of incipient disease based on visual symptoms of geraniums (Pelargonium ×hortorum) exposed to water mold pathogens is often difficult, especially when the plants are maintained under optimum growing conditions. Such plants tend to be asymptomatic until late in the infection process when control methods are less effective and the aesthetic value of the finished crop is diminished. To circumvent such a problem and to be able to predict the susceptibility of the plants to infection, we used infrared transducers to measure leaf surface temperature, in addition to other parameters, in geranium plants exposed to a number of soil pathogens that are commonly associated with greenhouse production. Differences in leaf temperature among treatments were noticeable by 2 week after inoculation and were the greatest in week 7. However, visual disease symptoms were not detected until 3 weeks after inoculation. Results of this study suggest that leaf temperature measurements are a versatile, nondestructive way of rapidly determining whether plants are under pathogen stress before visual symptoms develop.

Full access

Unique growing containers and nontraditional types of plant presentation may lead to new production problems for growers. This study was conducted to evaluate the growth of a popular container plant, calibrachoa (Calibrachoa ×hybrida), produced in hanging flower pouches using different growing substrate compositions, polymer amendments, and the layering of substrate types of differing moisture holding capacity with the goal of achieving more uniform plant growth and improved after-sale maintenance. Plastic cylindrical hanging pouches were filled with one of nine hydrated substrate types or combinations. Rooted cuttings of ‘Colorburst Violet’ calibrachoa were planted as indicator plants to identify treatment effects because of their susceptibility to iron deficiency-induced chlorosis of new leaves. Daily measurements of substrate moisture were taken to determine the need for irrigation. Chlorophyll content was estimated nondestructively with a hand-held chlorophyll meter to determine the impact of moisture content. Light, porous substrates resulted in the most uniformly green plants and high numbers of flowers from top to bottom. A layered pouch with heavy, compost-amended substrate above a light, porous layer also produced high-quality, uniform plants. This enabled water to be distributed more uniformly throughout the container volume. This study provides fundamental information on how container geometry and soil moisture retention can influence water management decisions by the grower.

Full access

Greenhouses are used in many climates for season extension or year-round production and can be expensive to heat. Greenhouse users and growers are often faced with management decisions that rely on an understanding of how temperature settings, heating systems, fuel types, and construction decisions influence overall heating costs. There are no easy-to-use programs to calculate heating costs associated with these factors over full cropping seasons. A computer program called Virtual Grower was created that helps calculate heating costs at many U.S. sites. The program uses a weather database of typical hourly temperature, light, and wind information of 230 sites from the National Renewable Energy Laboratory in the calculations. A user can define unique design characteristics such as building material and construction style. The user also defines the type of heating system and heating schedule, and then the program will predict heating costs based on typical weather at the selected location. Shorter-term predictions with weather forecasts of 2 days or less can be made with the software if there is an internet connection through integration with local weather forecasts. Virtual Grower can serve as a platform from which many other features can be added, such as plant growth and scheduling. Continued development will improve the software and allow users to perform baseline analysis of their heating costs, identify areas in their production to improve efficiency, and take some of the guesswork out of energy analysis in unique greenhouses.

Full access

Controlled-release fertilizers (CRFs) have not been extensively used in floricultural production, perhaps due to lack of grower experience and research-based information with their use in herbaceous plant production. Any information about the correct use of CRF should increase growers’ confidence in using this type of fertilizer. The objective of this research was to compare the growth and quality of bedding impatiens (Impatiens wallerana XTREME™ ‘Scarlet’) when grown with typical water-soluble fertilizer (WSF) and with different combinations of longevity and rates of a single formulation of CRF. The CRF 16N–3.9P–10K consisted of different longevities (3–4, 5–6, 8–9, or 12–14 months) and application rates (1.4, 3.4, 6.8, 10.2, or 13.6 kg·m−3). Plants were grown in the greenhouse, and consumer evaluations were performed at market maturity. Plant canopy cover, flower cover (FC), and shoot dry weight (DW) were also determined. Commercially acceptable plant quality was achieved with CRF application rates between 3.4 and 6.8 kg·m−3. At low CRF application rates, the faster release rate (shorter longevities) CRFs produced larger plants [DW and leaf canopy cover (LCC)] with greater flowering potential (FC) than slower release rate CRFs. At higher application rates, slower release rates (longer longevities) outperformed the faster release CRFs for the same parameters. CRF-grown plants were smaller than WSF plants when CRFs were applied at the lowest rates. No differences in any of the three variables measured were found when plants were grown at a rate of 6.8 kg·m−3 CRF of any longevity or with WSF. Growers should adjust CRF application rates according to CRF longevity.

Full access