Search Results

You are looking at 1 - 6 of 6 items for :

  • Author or Editor: John M. DeLong x
  • HortScience x
Clear All Modify Search

Fruit Yield and quality measurements were taken from 10 year-old `Newhaven' peach trees pruned at prebloom (preb), full-bloom (fb), and 2, 4, 6, and 8 weeks following fb. Trees were hand-pruned with dormant type thinning and heading cuts. Fruit weight and circumference tended to decrease from fb onwards, while fruit were firmer at fb+4 and fb+6 than at preb. Firmer peaches were also measured at fb+6 than at fb. Fruit color was measured on a tristimulus color scale. Value (L) indicated that lighter fruit occurred with pruning at preb, fb, and fb+4 weeks, while fruit were darker at fb+2, fb+6 and fb+8 weeks. Hue (a) indicated that trees being pruned at preb had redder fruit than those pruned at fb+2 or fb+8 weeks. Redder fruit were also measured at fb+6 than at fb+8 weeks. Chroma (b) indicated that peaches from trees pruned at fb+4 had the highest degree of yellow, while fruit from tree pruning at fb were more yellow than at fb+2, fb+6 and fb+8 weeks. Also being investigated are the pruning timing effects on cold hardiness and carbohydrate status of one year-old stems, and on Cytospora canker incidence at the pruning cuts.

Free access

`Redcort Cortland' and `Redmax' and `Summerland McIntosh' apples (Malus ×domestica Borkh.) were treated with 900 nL·L-1 of 1-methylcyclopropene (1-MCP) for 24 hours at 20 °C before storage and were kept at 3 °C in either a controlled atmosphere (CA) of 2 kPa O2 and <2.5 kPa CO2 or in an air (RA) environment for up to 9 months. After 4.5 months, half of the fruit were treated with a second 900 nL·L-1 1-MCP application in air at 3 °C for 24 hours and then returned to RA or CA storage. At harvest and following removal at 3, 6, and 9 months and a 7-day shelf life at 20 °C, fruit firmness, titratable acidity (TA) and soluble solids content (SSC) were measured, while internal ethylene concentrations (IEC) in the apple core were quantified after 1 day at 20 °C. Upon storage removal and following a 21-day shelf life at 20 °C, disorder incidence was evaluated. 1-MCP-treated apples, particularly those held in CA-storage, were more firm and had lower IEC than untreated fruit. Higher TA levels were maintained with 1-MCP in all three strains from both storages, while SSC was not affected. Following the 6- and/or 9-month removals, 1-MCP suppressed superficial scald development in all strains and reduced core browning and senescent breakdown in RA-stored `Redmax' and `Summerland' and senescent breakdown in RA-stored `Redcort'. 1-MCP generally maintained the quality of `Cortland' and `McIntosh' fruit held in CA and RA environments (particularly the former) to a higher degree than untreated apples over the 9-month storage period. A second midstorage application of 1-MCP at 3 °C did not improve poststorage fruit quality above a single, prestorage treatment.

Free access

A final harvest window (FHW), expressed as Streif Index coefficients [firmness/(percentage soluble solids concentration × starch index)], was developed for identifying maximum fruit quality for strains of `McIntosh', `Cortland', and `Jonagold' apples (Malus ×domestica Borkh.) following 8 months of controlled-atmosphere (CA) storage. The Streif Index was calculated during nine preharvest (twice per week) intervals and four weekly harvests over three seasons. The relationship between Streif Index (dependent variable) and day of year (independent variable) of the preharvest and harvest samples was then derived by negative first-order linear regression equations that had parameter estimate (b1) probability values ≤0.0001 for all of the strains. Apples from the four harvest periods were stored in standard CA storage for 8 months and then subjected to a 7-day shelf-life test at 0 °C followed by 5 days at 20 °C. Poststorage quality data were categorized and combined to produce an overall fruit quality rating scale. For each strain, the final harvest (i.e., day of year) was identified as that which directly preceded at least a 10% drop in the poststorage fruit quality rating compared with the first harvest rating. The FHW, expressed as Streif Index coefficients via the regression of Streif Index (Y) on day of year (X), was then calculated as the 3-year final harvest mean with the upper and lower window limits being determined by the standard deviation of the mean. The lower to upper FHW boundaries ranged from 4.18 to 5.34, 4.12 to 5.46, 4.51 to 5.68, 5.23 to 5.99, and 1.38 to 2.34 for Redmax, Marshall and Summerland `McIntosh', Redcort `Cortland' and Wilmuta `Jonagold', respectively. The practical utility of the Streif Index method lies in the ease with which apple fruit maturity at harvest can be evaluated for its suitability for long-term CA storage.

Free access

To determine if postharvest treatments of 1-methylcyclopropene (1-MCP) retard the senescence of highbush blueberries (Vaccinium corymbosum L.) removed from storage, `Burlington' (early) and `Coville' (late) fruit were harvested from four experimental sites and treated for 24 hours at 20 °C with 0 (control), 25 (low), 100 (medium), or 400 (high) nL·L-1 of 1-MCP. All fruit were then stored in a controlled atmosphere of 10-15 kPa O2 and 10 kPa CO2 at -1 to 1 °C for 4, 8, and 12 weeks, followed by a 20 °C shelf-life of up to 20 days. During the shelf-life period immediately after harvest and those following each storage removal, percent marketable fruit (PMF) were calculated daily as: [fruit in good condition]/[total berry number] × 100. Changes in PMF were not affected by 1-MCP treatment; hence, we conclude that 1-MCP at rates up to 400 nL·L-1 does not alter the shelf-life quality of the highbush blueberry cultivars tested.

Free access

Biofumigation by volatiles of Muscodor albus Worapong, Strobel & W.M. Hess, an endophytic fungus, was investigated for the biological control of three postharvest fungi, Botrytis cinerea Pers., Penicillium expansum Link, and Sclerotinia sclerotiorum (Lib) de Bary, and three bacteria, Erwinia carotovora pv. carotovora (Jones) Bergey et al., Pseudomonas fluorescens Migula (isolate A7B), and Escherichia coli (strain K12). Bacteria and fungi on artificial media in petri dishes were exposed to volatiles produced by M. albus mycelium growing on rye seeds in sealed glass 4-L jars with or without air circulation for up to 48 hours. The amount of dry M. albus–rye seed culture varied from 0.25 to 1.25 g·L–1 of jar volume. Fan circulation of volatiles in jars increased efficacy and 0.25 g·L–1 with fan circulation was sufficient to kill or suppress all fungi and bacteria after 24 and 48 hours, respectively. Two major volatiles of M. albus, isobutyric acid (IBA) and 2-methyl-1-butanol (MB), and one minor one, ethyl butyrate (EB), varied in their control of the same postharvest fungi and bacteria. Among the three fungi, IBA killed or suppressed S. sclerotiorum, B. cinerea, and P. expansum at 40, 25, and 45 μL·L –1, respectively. MB killed or suppressed S. sclerotiorum, B. cinerea, and P. expansum at 75, 100, and 100 μL·L –1, respectively. EB was only able to kill S. sclerotiorum at 100 μL·L –1. Among the three bacteria, IBA killed or suppressed E. coli (K12), E. carotovora pv. carotovora, and P. fluorescens at 5, 12.5, and 12.5 μL·L–1, respectively. MB killed or suppressed E. coli (K12), E. carotovora pv. carotovora, and P. fluorescens at 100, 75, and 100 μL·L–1, respectively. EB did not control growth of the three bacteria. This study demonstrates the need for air circulation in M. albus, MB, and IBA treatments to optimize the efficacy of these potential postharvest agents of disease control.

Free access

Fewer postharvest technologies are available for use on organic than conventional fruits and vegetables. Even though biopesticides are perceived as likely candidates for postharvest use on organic produce, only some biopesticides will be approved as organic compounds for various reasons. An example is the definition of a biopesticide used by regulatory agencies such as the EPA which includes compounds that will not be considered organically acceptable. Fortunately, there are other existing or new technologies that could be acceptable on organic fruits and vegetables. Some examples are hot water immersion treatment or a hot water rinsing and brushing, new innovative controlled atmosphere techniques, alternative sprout control agents, naturally occurring volatiles and biofumigants. More research is needed on each of these technologies, both singly and in combination with each other.

Free access