Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: John M. Capik x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

One hundred ninety clonal accessions of Corylus, including species and various interspecific hybrids of C. avellana, C. americana, C. heterophylla, C. colurna, and C. fargesii, were assessed for their response to field exposure to the eastern filbert blight (EFB) pathogen, Anisogramma anomala, in New Jersey, where the fungus is native. Plants were obtained from the U.S. Department of Agriculture Agricultural Research Service National Clonal Germplasm Repository and Oregon State University, the University of Nebraska, Lincoln, and the National Arbor Day Foundation. Additional plant material was acquired from the Morris and Holden Arboreta and from private nurseries in Amherst, NY, and Niagara-on-the-Lake, Ontario, Canada. The accessions were chosen based on their resistance to EFB in Oregon, a region where A. anomala is not native, or anecdotal reports and grower observations of tolerance or resistance to the disease. Trees were planted in the field from 2002 through 2009 in New Jersey where they were exposed to EFB yearly through field inoculations and natural spread. In Jan. 2012, they were visually evaluated for the presence of EFB. The cankers were measured, and the proportion of diseased wood was calculated for susceptible trees. Nearly all accessions reported to be resistant to EFB in Oregon maintained at least a useful level of tolerance in New Jersey with a number remaining free of cankers. However, several accessions developed small to medium-sized cankers and showed branch dieback, including offspring of C. avellana ‘Gasaway’. Most C. americana and C. heterophylla accessions remained free of EFB, although variation in EFB response was found in hybrids of these species with C. avellana, ranging from no signs or symptoms to severe EFB. Nearly half of the C. colurna × C. avellana hybrids developed cankers, whereas each of the C. fargesii accessions and most grower selections developed in eastern North America remained free of EFB. The results document the existence of a wide diversity of Corylus germplasm that expresses resistance or a high level of tolerance to EFB in New Jersey and confirms previous reports that C. americana is highly resistant to the disease. Interestingly, most C. heterophylla and the C. fargesii were also found to be resistant despite originating in Asia where A. anomala has not been found. The various interspecific hybrids show the potential for incorporating EFB resistance from wild species through breeding. The results provide further evidence of differences in disease expression in Oregon and New Jersey, where isolates differ and disease pressure may be higher.

Free access

Eastern filbert blight (EFB), caused by the fungus Anisogramma anomala, is a primary limitation to european hazelnut (Corylus avellana) cultivation in eastern North America. American hazelnut (Corylus americana) is the endemic host of A. anomala and, despite its tiny, thick-shelled nuts, is a potentially valuable source of EFB resistance and climatic adaptation. Interspecific hybrids (Corylus americana × C. avellana) have been explored for nearly a century as a means to combine EFB resistance with wider adaptability and larger nuts. Although significant progress was made in the past, the genetic diversity of the starting material was limited and additional improvements are needed for expansion of hazelnut (Corylus sp.) production outside of Oregon, where 99% of the U.S. crop is currently produced. Our objective was to determine if C. americana can be a donor of EFB resistance. We crossed 29 diverse EFB-resistant C. americana accessions to EFB-susceptible C. avellana selections (31 total progenies) to produce 2031 F1 plants. In addition, new C. americana germplasm was procured from across the native range of the species. The new collection of 1335 plants from 122 seed lots represents 72 counties and 22 states. The interspecific hybrid progenies and a subset of the American collection (616 trees from 62 seed lots) were field planted and evaluated for EFB response following field inoculations and natural disease spread over seven growing seasons. EFB was rated on a scale of 0 (no EFB) to 5 (all stems containing cankers). Results showed that progeny means of the interspecific hybrids ranged from 0.96 to 4.72. Fourteen of the 31 progenies were composed of at least one-third EFB-free or highly tolerant offspring (i.e., ratings 0–2), transmitting a significant level of resistance/tolerance. Several corresponding C. americana accessions that imparted a greater degree of resistance to their hybrid offspring were also identified. In addition, results showed that 587 (95.3%) of the 616 C. americana plants evaluated remained completely free of EFB. These findings confirm reports that the species rarely expresses signs or symptoms of the disease and should be robustly studied and exploited in breeding.

Open Access

The development of new cultivars resistant to the disease eastern filbert blight (EFB), caused by Anisogramma anomala, is of primary importance to hazelnut (Corylus sp.) breeders in North America. Recently, a large number of EFB-resistant cultivars, grower selections, and seedlings from foreign germplasm collections were identified. However, for a significant number of these, little is known of their origin, relationships, or genetic background. In this study, 17 microsatellite markers were used to investigate the genetic diversity and population structure of 323 unique accessions, including EFB-resistant and tolerant germplasm of uncertain origins, in comparison with a panel of known reference accessions representing a wide diversity of Corylus cultivars, breeding selections, and interspecific hybrids. The resulting allelic data were used to construct an unweighted pair group method using arithmetic averages (UPGMA) dendrogram and STRUCTURE diagram to elucidate relationships among the accessions. Results showed 11 consensus groups with EFB-resistant or tolerant accessions in all, providing strong evidence that EFB resistance is relatively widespread across the genus Corylus. Furthermore, open-pollinated seedlings tended to group together with reference accessions of similar geographic origins, providing insight into their genetic backgrounds. The results of this study add to the growing body of knowledge of hazelnut genetic resources and highlight recently introduced EFB-resistant seedling germplasm as new, unrelated genetic pools of resistance.

Free access

European hazelnut (Corylus avellana L.) is an economically important edible nut producing species, which ranked sixth in world tree nut production in 2016. European hazelnut production in the United States is primarily limited to the Willamette Valley of Oregon, and currently nonexistent in the eastern United States because of the presence of a devastating endemic disease, eastern filbert blight (EFB) caused by Anisogramma anomala (Peck) E. Muller. The primary commercial means of control of EFB to date is through the development and planting of genetically resistant european hazelnut cultivars, with an R-gene introduced from the obsolete, late-shedding pollinizer ‘Gasaway’. Although the ‘Gasaway’ resistance source provides protection against EFB in the Pacific northwestern United States (PNW), recent reports have shown that it is not effective in parts of the eastern United States. This may be in part because the identification and selection of ‘Gasaway’ and ‘Gasaway’-derived cultivars occurred in an environment (PNW) with limited genetic diversity of A. anomala. The objectives of the current research were to develop a genetic linkage map using double digestion restriction site associated DNA sequencing (ddRADseq) and identify quantitative trait loci (QTL) markers associated with EFB resistance from the resistant selection Rutgers H3R07P25 from southern Russia. A mapping population composed of 119 seedling trees was evaluated in a geographic location (New Jersey) where the EFB fungus is endemic, exhibits high disease pressure, and has a high level of genetic diversity. The completed genetic linkage map included a total of 2217 markers and spanned a total genetic distance of 1383.4 cM, with an average marker spacing of 0.65 cM. A single QTL region associated with EFB resistance from H3R07P25 was located on european hazelnut linkage group (LG) 2 and was responsible for 72.8% of the phenotypic variation observed in the study. Based on its LG placement, origin, and disease response in the field, this resistance source is different from the ‘Gasaway’ source located on LG6. The current results, in combination with results from previous research, indicate that the H3R07P25 source is likely exhibiting resistance to a broader range of naturally occurring A. anomala isolates. As such, H3R07P25 will be important for the development of new european hazelnut germplasm that combines EFB resistance from multiple sources in a gene pyramiding approach. Identification of EFB resistance in high disease pressure environments representing a diversity of A. anomala populations is likely a requirement for identifying plants expressing durable EFB resistance, which is a precursor to the development of a commercially viable european hazelnut industry in the eastern United States.

Free access