Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Jenny C. Moore x
  • HortTechnology x
Clear All Modify Search

Biodegradable mulches (BDMs) provide a unique advantage to growers in that they can be tilled into the soil after use, eliminating disposal costs that include time, labor, and equipment needs. Biodegradation of BDMs in the soil can be assessed by the presence of visible mulch fragments; although this is not a direct measure of biodegradation, it provides an initial estimation of mulch biodegradation. We carried out three field experiments to develop a protocol for quantifying BDM fragments in the soil after soil incorporation of mulch. Expt. 1 was done at Mount Vernon, WA, and Knoxville, TN, using five BDMs in four replications, including a polyethylene (PE) mulch reference treatment (three replications and at Mount Vernon only), and a ʽCinnamon Girl’ pumpkin (Cucurbita pepo) test crop. At the end of the growing season, mulches were tilled into the soil to a depth of 6 inches and within 16 days, five soil samples were collected with a golf hole cutter (4 inches diameter and 6 inches deep). Fifty-nine percent of the PE mulch fragments were recovered from the reference treatment. Among the remaining treatments, there was a high plot-to-plot variation as to the percent of the BDM recovered (3% to 95% at Mount Vernon, 2% to 88% at Knoxville). To exclude the possibility of mulch degradation impacting mulch recovery, in Expts. 2 and 3 (at Mount Vernon only), one BDM was laid, then tilled into the soil and sampled using the same sampling core as in Expt. 1, but all in 1 day. In Expt. 2, 15 soil samples were collected per plot, which recovered 70% of the mulch, and in Expt. 3, the entire plot was sampled by collecting 128 soil samples per plot, which recovered 62% of the mulch. In summary, sampling with a relatively large core recovered less than 70% of tilled-in mulch, there was high variability between plots within each treatment because of uneven distribution of the mulch fragments in the plot, and even 50 samples per plot did not provide an accurate estimate of the amount of mulch remaining in the field. Thus, soil sampling with a large core was ineffective, and new sampling methods are needed to assess the amount of BDM remaining in the field after soil incorporation.

Full access

Growers seeking alternatives to traditional polyethylene plastic mulch may use biodegradable plastic mulches (BDMs). However, plasticulture systems typically also use plastic drip tape underneath the mulch, which must be removed from the field and disposed of at the end of the season, making tilling the BDM into the soil more difficult and expensive. A potential solution to this dilemma may be to use other irrigation methods, such as overhead sprinklers, that could be more easily removed from the field and reused from year to year. At Knoxville, TN, in 2019 and 2020, we grew three cultivars of romaine lettuce (Lactuca sativa) on BDM with two irrigation systems (overhead sprinklers above the mulch and drip irrigation tape under the mulch) to compare water use, disease, and yield in these two irrigation systems. Water use was higher in overhead vs. drip irrigation in both years; however, the difference in water use was much smaller in 2019 due to higher rainfall amounts during the time period the lettuce was growing in the field (March to May). Disease incidence and severity were very low both years for both irrigation systems. There were no differences in marketable yield (number of heads) between irrigation treatment in 2019. In 2020, marketable yield by number was greater in the drip vs. overhead irrigation treatment. Unmarketable yield in 2019 was due to heads that were too small; in 2020, unmarketability was predominantly due to tipburn in overhead irrigated ‘Jericho’. Overall, marketable lettuce yield did not differ between irrigation treatments in 2019 and was similar for ‘Parris Island Cos’ in 2020. Although quantitative weed counts were not made, observations of weed pressure between rows showed that weed pressure was higher in overhead irrigated compared with drip irrigated subplots. This highlights the need to have a between-row weed management program in place. The results of this study suggest that with attention to cultivar and weed management, overhead irrigation could be a viable alternative to drip irrigation for lettuce production on BDM, especially for early spring lettuce when rainfall is historically more plentiful.

Open Access

Plastic mulch films contribute to improved crop yield and quality for vegetable and small fruit cropping systems. Although the single-season agronomic performance of conventional polyethylene mulches and soil-biodegradable mulches (BDMs) are similar, over time BDMs can begin to break down during storage and subsequently not provide season-long soil coverage. In this study, the changes in physicochemical properties of BDMs were investigated over 3 years of indoor storage (2015–18) under ideal environmental conditions in two laboratories. Mulches evaluated were black, 20–40 µm thick, suitable for annual vegetable production, and included three BDMs: two polybutylene adipate terephthalate (PBAT)-enriched mulches that are commercially available in North America, an experimental polylactic acid (PLA) and polyhydroxyalkanote-based film, and a conventional polyethylene mulch as a control. Tensile properties, specifically peak load and elongation at maximum tensile stress, decreased during storage, particularly for the PBAT-based BDMs, indicating a loss of strength. During year 3 of storage, the tensile properties declined extensively, suggesting embrittlement. The average molecular weight of PLA and PBAT slightly increased during year 1, perhaps due to release of monomers or oligomers, and then decreased extensively during years 2 and 3 due to hydrolysis of ester bonds (confirmed by Fourier transform infrared spectroscopic analysis). The structural integrity of BDMs was assessed during years 2 and 3 of the study (2017–18) in field trials at the locations where they were stored, Knoxville, TN, and Mount Vernon, WA, for vegetable production. The degradation of the BDMs during the cropping season was higher in 2018 compared with 2017, suggesting that degradation of mechanical and chemical properties while in storage may have contributed to rapid degradation of mulches in the field. In summary, BDMs undergo degradation even under ideal storage conditions and may perform best if deployed within 2 years of their receipt date. The farmer should verify that proper storage conditions have been used before receipt and that manufacturing date precedes the receipt date by no more than 6 months.

Open Access