Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Jasmine J. Mah x
  • HortScience x
Clear All Modify Search

In greenhouse ornamental crop production, bedding plants grown below high densities of hanging baskets (HBs) tend to be of lower quality. Hanging basket crops can decrease the red to far red ratio (R:FR) of the growing environment below; however, the extent to which decreased R:FR affects plant morphology and flowering of the lower-level crops is unknown. The present study examined effects of R:FR on morphology and flowering of marigold ‘Antigua Orange’ (Tagetes erecta), petunia ‘Duvet Red’ (Petunia ×hybrida), calibrachoa ‘Kabloom Deep Blue’ (Calibrachoa ×hybrida), and geranium ‘Pinto Premium Salmon’ (Pelargonium ×hortorum). Five R:FR light treatments were provided ranging from R:FR 1.1 (representing unfiltered sunlight) to R:FR 0.7 (representing shaded conditions under HBs) using light-emitting diodes (LEDs) in growth chambers, each with identical photosynthetically active radiation (PAR) (400–700 nm) and FR added to achieve the target R:FR ratio. Two experiments using the same R:FR treatments were conducted with day/night temperature regimes of 20 °C/18 °C and 25 °C/21 °C, respectively. In the second experiment, a fluorescent light treatment was included. The results of the second experiment were more dramatic than the first, where reducing R:FR from 1.1 to 0.7 increased height by 11%, 22%, and 32% in marigold, petunia, and calibrachoa, respectively, and increased petiole length in geranium by 10%. Compared with R:FR 1.1, the R:FR 0.7 shortened the time to the appearance of first flower bud by 2 days in marigold, whereas flowering was minimally affected in other species. Compared with pooled data from the LED treatments, fluorescent light increased relative chlorophyll content for all species, reduced height in marigold, petunia, calibrachoa, and geranium by 26%, 67%, 60%, and 48%, and reduced stem dry weight by 28%, 39%, 21%, and 31%, respectively. The differences in morphology observed under fluorescent light compared with LED R:FR treatments indicate that light quality manipulation is a potential alternative to chemical growth regulators in controlled environments such as greenhouses and growth chambers.

Free access