Search Results

You are looking at 1 - 10 of 17 items for :

  • Author or Editor: James P. Syvertsen x
  • HortScience x
Clear All Modify Search

Mechanical harvesting of citrus trees by trunk or canopy shakers can cause leaf and twig removal, bark injury and root exposure. Such problems have restricted the adoption of mechanical harvesting in Florida citrus. We assessed physiological responses of citrus trees that were mechanically harvested with a linear-type trunk shaker, operating at 4 Hz, 70.8 kg mass weight, and 6.5 cm displacement, for 10 or 20 seconds. We measured fruit recovery efficiency, leaf and shoot removal, mid-day stem water potential, leaf gas exchange, and leaf fluorescence emission of mature `Hamlin' and `Valencia' orange trees under restricted or normal irrigation. Shaking treatments effectively removed 90% to 94% of fruit without bark damage. Compared to harvesting by hand, trunk shaking removed 10% more leaf area and twigs, and caused some visible exposure of fibrous roots at the soil surface. There were no significant treatment differences on mid-day stem water potential, leaf gas exchange, and leaf photosystem efficiency. Excessively shaken trees for 20-30 seconds can temporary induce stress symptoms resembling that in trees without irrigation. Trees may have benefited from the low levels of leaf and twig loss after trunk shaking that compensated for any root loss. Long-term effects of trunk shaking will be assessed by tree growth, return bloom, subsequent yield, and carbohydrate reserves.

Free access

In order to evaluate possible reduced nitrate leaching while maintaining yield, `Hamlin' orange and `Flame' grapefruit trees on `Carrizo' or `Swingle Citrumelo' rootstocks were grown from planting using only foliar urea or soil-applied nitrate or ammonium N. An intermediate treatment of foliar and ground N was included also. From the 4th year, yields were recorded for 3 years. As previously reported, canopy growth was greater for the foliar urea treatment for the first 3 years. For 2 of the next 3 bearing years, the grapefruit trees in the foliar urea N treatment produced significantly less yield than the soil-applied treatment and the intermediate treatment was intermediate. The orange trees in the foliar urea treatment produced significantly less fruit than the soil N treatment in only 1 of 3 years, but the yields were numerically less every year. Results for fruit quality and nitrate leaching will be reported also. Foliar urea application alone was more costly and less productive than a soil N program.

Free access

To gain insight into salinity tolerance of citrus, we studied growth, leaf, and root Cl concentrations and physiological responses of 5-month-old seedlings of the citrus rootstock Carrizo citrange [Citrus sinensis (L.) Osb. × Poncirus trifoliate L.] grown in a greenhouse in three different substrates: Candler sand soil, Floridana sandy clay soil, or a commercial soilless peat/perlite/vermiculite potting media. Plants were kept well-watered with a complete nutrient solution plus either no salt (control) or 50 mM NaCl for 9 weeks. Without salinity, substrate type did not affect total plant growth although there were differences in shoot/root dry weight ratio and mineral nutrient relationships attributable to substrate. Predawn leaf water potential, midday CO2 assimilation, and leaf water use efficiency were highest in seedlings grown in the soilless peat. The salt treatment decreased leaf and root growth, reduced leaf Ca2+, and increased leaf K+ concentration in all the three substrates. Overall, plant growth was negatively related to leaf Cl. Leaf growth reductions were least in Candler-grown seedlings and greatest in Floridana soil as Cl concentrations were lowest in Candler sand and highest in Floridana soil. Leaf Na+ was also highest in Floridana seedlings. In contrast to salt ions in leaves, roots of salinized seedlings in Candler sand had the highest Na+ and Cl concentration. Salinity reduced net gas exchange of leaves similarly in all three substrates. Salinity reduced both leaf water potential and osmotic potential such that leaf turgor was increased. Thus, salinity-induced reductions in growth and net gas exchange were not the result of loss of turgor but more likely resulting from toxic ion accumulation in leaves. Based on the relative rankings of leaf growth and leaf Cl concentrations, Carrizo seedlings from Candler sand had the highest salt tolerance and those grown in Floridana soil had the lowest salt tolerance. Substrate type should be considered when characterizing plant growth and physiological responses to salinity.

Free access

Although citrus trees are considered relatively salt-sensitive, there are consistent differences in Na+ and Cl tolerance among different citrus rootstocks. We grew uniform seedlings of rough lemon (RL) and the more Na+-tolerant Swingle citrumelo (SC) with and without 50 mm NaCl for 42 days. Salinity reduced leaf chlorophyll and plant transpiration rate (Ep) more in RL than SC. Confocal laser scanning analyses using the Na+-specific cell-permeant fluorescent probe CoroNa-Red revealed a higher capacity for Na+ sequestration in root tissue vacuoles of SC than in RL roots and that cell walls within the stele acted as Na+ traps. In leaves, however, RL had significantly higher Na+-dependent fluorescence than SC. Thus, the sequestration of Na+ in root tissue vacuoles and its immobilization by cell walls were key contributing mechanisms enabling SC leaves to maintain lower levels of Na+ than RL leaves. Examination of intracellular distribution of CoroNa-Green fluorescence in SC root protoplasts verified a vacuolar localization for Na+ in addition to the presence of a 2- to 6-μm unidentified endosomal compartment containing significantly higher Na+ concentrations.

Free access

Eighteen, 4-year-old Grapefruit (Citrus paradisi) cv. `Redblush' trees on either Volkamer lemon (C. volkameriana = VL) or Sour orange (C. aurantium = SO) rootstocks were grown in 7.6 kiloliter drainage lysimeters in a Candler fine sand (Typic Quartzipsamments), and fertilized with nitrogen (N) in 40 split applications at 76, 140 and 336 g N year-1 (= 0.2, 0.4 and 0.9 x the recommended annual rate). Labelled 15N was substituted for the N in a single fertigation at each rate at the time of fruit set the following year, to determine N uptake, allocation and leaching losses. “Nitrogen-uptake and allocation were primarily determined by the sink demand of fruit and vegetative growth, which in turn were strongly influenced by rootstock species. Larger trees on VL required at least 336 g N yr-1 to maintain high growth rates whereas smaller trees on SO of the same age only required 140 g N year-1. Of the 15N applied at the 336 g N rate to the SO trees, 39% still remained in the soil profile after 29 days. With optimally scheduled irrigations, 15N leached below the root zone was less than 3% of that applied after 29 days, regardless of rate. However, 17% of the applied 15N was recovered from a blank (no tree) lysimeter tank. Total 15N recovery ranged from 55-84% of that applied, indicating that a sizeable fraction of the 15N applied may have been lost through denitrification.

Free access

The objectives of this greenhouse study were to determine the rate of nitrogen (N) uptake over a 30 day period, use efficiency and N partitioning within two citrus rootstock species. Sixteen-week old seedlings of Cleopatra mandarin (C. reticulata Blanco) and Swingle citrumelo (C. paradisi × P. trifoliata) were assigned to treatments (harvest day × rootstock species) in a completely randomized design, grown in a Candler fine sand for 6 weeks and fertilized weekly with a N:P:K (5:1:5) plus minor elements solution at 200 mg N · liter-1. A single application of 15NH4 15NO3 (20% 15N) was substituted for a normal weekly fertigation. Six replicate plants of each rootstock species were harvested at ½, 1½, 3½, 7½, 10½ and 30 days after I5N application. Uptake of 15N was more rapid in SC over the first 7½ days (17% of applied) than in CM (11%), but uptake over 30 days was similar (52-53%) for both species. A higher proportion of 15N was found in the photosynthetic tissues of CM (74%) than in SC (48%), whereas a lower proportion was found in the fibrous roots of CM (9%) than SC (22%).

Free access

Copper (Cu)-based fungicidal sprays are widely used on many crops although Cu sprays can be phytotoxic under some conditions. The mechanism of phytotoxicity is poorly understood but must involve toxic levels of Cu penetrating plant tissues. We studied the effect of different adjuvants on the deposition pattern of droplets and penetration of Cu (in Kocide fungicide) through isolated cuticles of ‘Marsh’ grapefruit leaves and ‘Valencia’ orange fruit. The addition of the silicone-based L-77 surfactant to the Kocide suspension markedly increased the spread of the droplets on cuticles and increased the penetration of Cu through fruit and abaxial leaf cuticles, both with stomatal pores, but not through astomatous adaxial leaf cuticles, which had much lower permeability. Urea and petroleum spray oil adjuvants had no effect on surface area of droplets or the penetration of Cu through leaf and fruit cuticles. Spray tank mixes of Cu fungicides with organosilicone surfactants should be avoided because these surfactants can enhance the penetration of Cu into citrus leaves and fruit thereby leading to phytotoxicity.

Free access

Urea solutions, with or without non-ionic (X-77) and organosilicone (L-77) surfactant, were applied to Citrus leaves and isolated cuticles to examine adjuvant effects on urea uptake and leaf net gas exchange. When compared to X-77, L-77 exhibited superior features as a surfactant, resulting in smaller contact angles of droplets deposited on teflon slide. Both L-77 and X-77 had a strong effect on penetration rate of urea within first 20 min of experiment. Effect of L-77 on urea penetration rate decreased quickly within next 20 min, whereas the effect of X-77 was sustained over a 24-h period following application. When compared to solution of urea alone, addition of X-77 to urea resulted in significant increase of the total amount of urea that penetrated the cuticles. The effect of L-77 was smaller, although the total amount of urea that penetrated the cuticles within a 4-day period was similar for both surfactants. Solutions of either urea alone, urea+L-77 and urea+X-77, or L-77 alone, induced a negative effect on net CO2 assimilation (ACO2) for 4 to 24 h after they were sprayed onto leaves. X-77, when applied alone, had no effect on ACO2. Scanning electron microscopy revealed that 1 h after application, leaf surfaces treated with X-77 appeared to be heavily coated, as opposed to those treated with L-77, which appeared similar to untreated control leaves.

Free access

We examined the effects of air temperature, relative humidity (RH), leaf age, and solution pH on penetration of urea through isolated cuticles of citrus leaves. Intact cuticles were obtained from adaxial surfaces of different aged grapefruit leaves. A finite dose diffusion system was used to follow movement of 14C-labeled-urea from solution droplets across cuticles throughout a 4-day period. The rate of urea penetration increased as temperature increased from 19 °C to 28 °C, but penetration was not further increased at 38 °C. Increasing RH increased droplet drying time and urea penetration at both 28 °C and 38 °C. Cuticle thickness, weight per area, and the contact angle of urea solution droplets increased as leaves aged. Cuticular permeability to urea decreased as leaf age increased from 3 weeks to 7 weeks, but permeability increased in cuticles from leaves older than 9 weeks. Contact angles decreased with increased urea solution concentration on six 7-week-old leaf surfaces, but solution concentration had no effect on contact angle on cuticles from younger and older leaves. Reducing pH of urea solution from pH 8 to pH 4 accelerated the loss of urea from breakdown, possibly due to hydrolysis.

Free access