Search Results

You are looking at 1 - 7 of 7 items for :

  • Author or Editor: Jacob Shreckhise x
  • HortScience x
Clear All Modify Search

Phosphorus (P) uptake efficiency (PUE; percent of applied P absorbed by roots) for containerized crops is ≈27% to 62%. Reducing P fertilization may increase PUE without decreasing growth and may reduce P leaching from containers, thus mitigating the environmental impact of containerized production while potentially reducing fertilizer input costs for growers. The objective of this study was to determine the minimum P application concentration and the resulting substrate pore-water (i.e., solution residing within and between substrate particles) P concentration that maintains maximal growth of three containerized woody plant taxa grown in pine bark substrate. Hydrangea paniculata Sieb. ‘Limelight’ (hydrangea), Ilex crenata Thunb. ‘Helleri’ (holly), and Rhododendron L. ‘Karen’ (azalea) were potted in pine bark substrate amended with dolomite and micronutrients and grown for 81 d in an open-wall greenhouse. Plants received either one of five constant liquid-feed treatments with varying P concentrations [80 mg·L−1 nitrogen (N), 50 mg·L−1 potassium (K), and 0.5, 1.0, 2.0, 4.0, or 6.0 mg·L−1 P] or a single application of controlled-release fertilizer (CRF; control) at experiment initiation. Calculated lowest P fertilizer concentration that sustained maximal shoot dry weight (SDW) in hydrangea and azalea was 4.7 and 2.9 mg·L−1, respectively, and holly SDW was the same across all liquid fertilizer treatments. In all three taxa, CRF-fertilized plants achieved <50% of maximal SDW observed in liquid-fertilized plants. Hydrangea root dry weight (RDW) nearly doubled as fertilizer P increased from 0.5 to 2.0 mg·L−1 P, but higher P concentrations did not further increase RDW. Holly RDW was unaffected by liquid P treatment. Pore-water P concentrations of treatments that sustained maximal SDW of hydrangea and azalea were as low as 0.6 and 2.2 mg·L−1 P, respectively. Our findings suggest that when using constant liquid feed, applied P levels more accurately predict plant growth responses than pore-water P levels.

Free access

To reduce the carbon-to-nitrogen (C:N) ratio, pine tree substrate (PTS) and other wood-based substrates can be precharged with urea so that growers do not have to add extra nitrogen (N) during crop production to compensate for immobilization. However, the impact of urea hydrolysis from this addition on the substrate solution has not been documented for wood-based substrates. The objectives of these experiments were to determine how urea hydrolysis in PTS impacts substrate solution and how hydrolysis is affected by urea and lime rates. In Expt. 1, 16-month-old pine chips (from loblolly pine trees, Pinus taeda L.) were milled to make PTS and PTS was amended with 0 or 1.0 kg·m−3 dolomitic limestone in factorial combination with urea-N rates of 0, 0.5, 1.0, 1.5, or 2.0 mg·g−1 dry weight. Urea hydrolysis was quantified by the detection of NH4-N in the substrate solution at 0, 48, 96, and 144 hours after urea addition. Substrate pH and electrical conductivity (EC) values were also measured. In Expt. 2, non-limed PTS was treated with the same urea rates as described; NH4-N and pH were measured at 24 and 48 hours after urea addition. Substrate solutions were incubated with jackbean urease to determine the remaining urea-N amount after 144 hours in Expt. 1 and after 24 and 48 hours in Expt. 2. In Expt. 1, NH4-N increased from 0 to 48 hours for the 0 and 1.0-kg·m−3 lime treatments and for all urea-N rates (except for the 0 rate); NH4-N did not increase thereafter. As urea-N rate increased, the amount of NH4-N increased and more N was detected for the limed PTS than in the non-limed PTS. Initial substrate pH values for the 0 and 1.0-kg·m−3 lime treatments were 4.5 and 5.6, respectively, and peaked 48 hours after urea application; pH values were higher in the limed PTS than for the non-limed PTS. At the highest urea-N rate and after 48 hours (Expt. 1), the PTS pH value increased 3.1 units to 7.6 for the non-limed PTS and the value increased 2.3 units to 7.9 for limed PTS. In Expt. 2 the increase in PTS pH values was approximately half of the Expt. 1 pH increases. Samples treated with urease derived from jackbean had less than 2% of the initial urea amount after 144 hours in Expt. 1 and after 48 hours in Expt. 2. However, less than 13% of the total amount of urea-N added to PTS was detected as NH4-N in the non-limed treatment after 144 hours in Expt. 1 (for all urea rates); detected amounts for the 1.0-kg·m−3 lime treatment ranged from 15.5% to 18.3%. Five percent or less of the total amount of urea-N added to PTS was detected as NH4-N in non-limed PTS after 48 hours in Expt. 2 (for all urea rates). The large amount of unrecovered NH4-N is likely explained by microbial N consumption. Using pH increase as an indication of urea hydrolysis, we found that an initial pH of 4.5 or higher (Expt. 1) resulted in twice the urea hydrolysis as an initial pH of 4.2 (Expt. 2). Initial substrate pH had a major impact on the amount of pH increase and substrate pH status and our findings suggest that the urea precharge rate should be based on the initial pH of the substrate.

Free access

The pour-through (PT) method is used in greenhouse and nursery production to monitor nutrient availability in soilless substrates. Efficacy of this method is based on the assumption that chemical properties of extracted solutions remain stable from the moment of collection until analysis. Extracted substrate solution can be analyzed directly in the greenhouse or sent to laboratories for complete nutritional analysis; thus, proper sample preservation methods (e.g., filtration and low temperatures) are critical for reducing sample contamination or degradation during storage. However, evidence of how these preservation methods affect chemical characteristics of PT samples is limited. The objective of this study was to evaluate the effect of storage time, storage temperature, and filtration of PT samples on pH, electrical conductivity (EC), and nutrient concentrations from pine bark– and peat-based substrates. PT extracts were obtained from liquid-fertilized fallow pots of either 100% milled pine bark (Expt. 1) or a 4 sphagnum peat: 1 perlite (by volume) substrate (Expt. 2). Aliquots of PT extract were either filtered or nonfiltered and then stored in plastic bottles at −22, 4, or 20 °C. EC, pH, and nutrient concentrations were analyzed at 0, 1, 7, and 30 days after PT sample collection. EC and pH in PT extracts of peat and pine bark, respectively, changed 1 day after collection. Storage time had the greatest effect on nutrient concentrations of samples stored at 20 °C. However, at day 30, nutrient concentrations had also changed in samples stored at 4 and −22 °C. Analytes that fluctuated most in both experiments and across all preservation treatments were dissolved organic carbon, total dissolved nitrogen, NO3 -N, and PO4 3−-P, whereas Ca2+, Mg2+, and SO4 2−-S were more stable in PT samples. This research suggests EC and pH should be analyzed immediately, whereas samples requiring nutrient analysis should be filtered immediately after collection, stored at 4 or −22 °C (preferably −22 °C), and analyzed within 7 days of collection.

Open Access

Magnolias (Magnolia sp.) are economically important woody ornamental plants; however, plant damage associated with frost and powdery mildew (Microsphaera alni and Phyllactinia corylea) disease is a major production challenge. To understand the tree architecture and powdery mildew resistance, 26 yellow-flowering magnolias (Magnolia sp.) were evaluated in McMinnville, TN, USA (USDA Plant Hardiness Zone 6b). One-year-old containerized trees were planted in a field plot during Mar 2006, with 4.6-m plant-to-plant and 3.7-m row-to-row spacing. The experiment was a completely randomized block design with three single-plant replications. Plant height and canopy diameter were measured on Dec 2016 and Feb 2018, and the apical dominance ratio (i.e., indicating tree architecture) was calculated by dividing the height by the canopy diameter. Plants were evaluated for powdery mildew severity and defoliation using a scale of 0% to 100% of the total plant canopy affected or defoliated, respectively, from Aug to Oct of 2016 and 2017. The area under the disease progress curve (AUDPC) was calculated for the evaluation period of each year. The plant apical dominance ratio ranged from 1 to 3, with ‘Gold Cup’ and ‘Sun Spire’ having the highest value, and ‘Lois’, ‘Gold Star’, ‘Golden Gala’, ‘Solar Flair’, ‘Stellar Acclaim’, ‘Sun Ray’, ‘Sunburst’, and ‘Sundance’ having the lowest value (i.e., relatively round shape). Of the 26 cultivars, Sundance, Sun Spire, Sun Ray, and Gold Cup had the lowest powdery mildew severity (10% to 33% in 2016 and 40% to 60% in 2017), AUDPC, and defoliation. Cultivars Anilou, Gold Star, Golden Pond, Golden Rain, Golden Sun, Green Bee, Honey Liz, Judy Zuk, Koban Dori, Lois, Solar Flair, Stellar Acclaim, and Yellow Bird were highly susceptible to powdery mildew (>80% disease severity) and had the highest AUDPC values. Results of this research may aid breeders, nursery producers, and landscapers when selecting yellow-flowering magnolia cultivars with desirable tree architecture and resistance to powdery mildew.

Open Access

Susceptibility to low-temperature injury and diseases is a major concern associated with ornamental camellia production. To comprehensively understand their growth, cold-hardiness, flowering, and disease resistance, 24 camellia (Camellia spp. and hybrids) cultivars and selections were evaluated in McMinnville, TN, USA (USDA plant hardiness zone 7a). During Mar 2011, camellias were planted in the field plots. Plant height and canopy width were measured annually from 2011 to 2019, and low-temperature damage was recorded in 2014 and 2023. The flowering duration was recorded each year from 2011 to 2020. The Camellia Yellow Mottle Virus, monochaetia leaf spot (Monochaetia sp.), edema, flower blight (Ciborinia camelliae), and flower spot (Botrytis cinerea) severity (% affected) were evaluated from Oct to Nov in 2016 and 2017. The season-long area under the disease progress curve (AUDPC) was calculated. Cultivars Arctic Snow and Pink Icicle exhibited the greatest height, and Autumn Spirit, Elaine Lee, Arctic Snow, and Survivor had the widest canopy width, whereas Shishigashira had the lowest height and canopy width. ‘April Remembered’, ‘April Rose’, ‘Arctic Snow’, ‘Ashton’s Ballet’, ‘Autumn Carnival’, ‘Autumn Spirit’, ‘Elaine Lee’, ‘Survivor’, and C. chekiangoleosa selection were least affected by winter low temperatures, whereas ‘Korean Snow’, ‘One Alone’, C. sasanqua selection, ‘Pink Icicle’, and ‘Shishigashira’ were severely damaged. ‘Arctic Snow’ flowered most reliably (6 of 8 years), whereas ‘April Remembered’, ‘April Rose’, ‘Ashton’s Ballet’, ‘Autumn Spirit’, and ‘Survivor’ flowered five times. ‘Korean Fire’, ‘Classic Pink’, ‘Maroon Mist’, and ‘Spring’s Promise’ displayed the highest virus severity and AUDPC. ‘Arctic Snow’, C. sasanqua selection, and the C. chekiangoleosa selection had no viral symptoms. C. sasanqua selection and ‘Red Aurora’ were significantly impacted by edema disorder, with severity ratings of ∼43% and 26%, respectively. Monochaetia leaf spot severity was highest in ‘Red Aurora’ and ‘Spring’s Promise’, whereas ‘Anacostia’, ‘Arctic Snow’, ‘Ashton’s Ballet’, ‘Autumn Spirit’, ‘Classic Pink’, ‘Kuro Delight’, ‘One Alone’, ‘Pink Icicle’, ‘Shishigashira’, and ‘Survivor’ exhibited the least monochaetia leaf spot severity and AUDPC. Flower blight and flower spot were observed only in ‘Arctic Snow’ and ‘Survivor’. These findings will aid landscapers and nursery growers with selecting and managing camellia cultivars effectively.

Open Access

Crapemyrtle (Lagerstroemia sp.) is a top-selling deciduous flowering tree in the United States, and its salability is often compromised by cercospora (Cercospora lythracearum Heald & F. A. Wolf) leaf spot. To compare cercospora leaf spot resistance, 32 crapemyrtle cultivars belonging to Lagerstroemia indica, Lagerstroemia fauriei, L. indica × L. fauriei, and L. indica × L. fauriei × Lagerstroemia limii and 12 cultivars or unnamed selections belonging to L. indica, L. indica × L. fauriei, L indica × L. fauriei × L. limii, L. limii, and Lagerstroemia subcostata were planted in field plots in 2004 and 2011, respectively. The experiment was a completely randomized block design with three and four replications in the 2004 and 2011 plantings, respectively. Plants were evaluated for cercospora leaf spot disease severity and defoliation using a scale of 0% to 100% foliage affected from August to October of 2015, 2016, and 2017. Area under the disease progress curve (AUDPC) was calculated for the evaluation period of each year. L. fauriei cultivars Fantasy, Kiowa, Townhouse, and Woodlander’s Chocolate Soldier and L. indica × L. fauriei Apalachee from the 2004 planting, and the L. subcostata and L. limii selections from the 2011 planting had lowest cercospora leaf spot disease severity ratings, AUDPC, and defoliation. L. indica × L. fauriei cultivars Choctaw, Miami, Natchez, Osage, Sarah’s Favorite, Tonto, Tuscarora, and Tuskegee, and L. indica × L. fauriei × L. limii Arapaho were moderately resistant to cercospora leaf spot, whereas cultivars belonging to L. indica and L. indica × L. fauriei × L. limii Cheyenne were highly susceptible to cercospora leaf spot. Results from this research may aid breeders, nursery producers, and landscapers in selecting crapemyrtle species and cultivars with cercospora leaf spot resistance.

Open Access

Soilless substrates are routinely amended with dolomite and sulfate-based micronutrients to improve fertility, but the effect of these amendments on phosphorous (P) in substrate pore-water during containerized crop production is poorly understood. The objectives of this research were as follows: compare the effects of dolomite and sulfate-based micronutrient amendments on total P (TP), total dissolved P (TDP), orthophosphate P (OP), and particulate P (PP; TP − TDP) concentrations in pour-through extracts; to model saturated solid phases in substrate pore-water using Visual MINTEQ; and to assess the effects of dolomite and micronutrient amendments on growth and subsequent P uptake efficiency (PUE) of Lagerstroemia L. ‘Natchez’ (crape myrtle) potted in pine bark. Containerized crape myrtle were grown in a greenhouse for 93 days in a 100% pine bark substrate containing a polymer-coated 19N–2.6P–10.8K controlled-release fertilizer (CRF) and one of four substrate amendment treatments: no dolomite or micronutrients (control), 2.97 kg·m−3 dolomite (FL); 0.89 kg·m−3 micronutrients (FM); or both dolomite and micronutrients (FLM). Pour-through extracts were collected approximately weekly and fractioned to measure pore-water TP, TDP, and OP and to calculate PP. Particulate P concentrations in pour-through extracts were generally unaffected by amendments. Relative to the control, amending pine bark with FLM reduced water-extractable OP, TDP, and TP concentrations by ≈56%, had no effect on P uptake efficiency, and resulted in 34% higher total dry weight (TDW) of crape myrtle. The FM substrate had effects similar to those of FLM on plant TDW and PUE, and FM reduced pore-water OP, TDP, and TP concentrations by 32% to 36% compared with the control. Crape myrtle grown in FL had 28% lower TDW but pour-through OP, TDP, and TP concentrations were similar to those of the control. Chemical conditions in FLM were favorable for precipitation of manganese hydrogen phosphate (MnHPO4), which may have contributed to lower water-extractable P concentrations in this treatment. This research suggests that amending pine bark substrate with dolomite and a sulfate-based micronutrient fertilizer should be considered a best management practice for nursery crop production.

Open Access