Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: J.P. Mattheis x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

Fruit quality and volatile compounds produced by apple fruit (Malus ×domestica Borkh. `Gala') were characterized following regular atmosphere (RA) or controlled atmosphere (CA) storage at 1°C. Static CA conditions were 1, 1.9, 2.8, or 3.7 kPa O2. Fruit stored under dynamic CA conditions were exposed to ambient air 1, 2, or 3 days per week for 8 hours then returned to 1 kPa O2. All CA treatments included 2 kPa CO2. Ethylene production was reduced following CA storage plus 1 day at 20°C compared with apples stored in RA. Apples stored in static 1 kPa O2 and the dynamic treatments had lower ethylene production compared with apples stored in 1.9 to 3.7 kPa O2 after 90 and 120 days. Ethylene production by apples from all CA treatments recovered during a 7-day poststorage ripening period at 20°C. Ester production was reduced following CA at 1 kPa O2 after 60 days compared with RA-stored fruit. Production of butyl acetate by apples stored in 1 kPa O2 static CA was 29%, 30%, and 7% of that produced by RA-stored fruit after 60, 90, and 120 days storage plus 7 days at 20°C. Amounts of 2-methylbutyl acetate were not affected by CA storage, however, production of other 2-methylbutyrate esters was reduced following 1 kPa O2 storage. Ester production increased with O2 concentration after 90 days in storage. The dynamic treatments resulted in greater ester emission after 120 days storage plus 7 days at 20°C compared with apples stored in static 1 kPa O2. Production of 1-methoxy-(2-propenyl) benzene by apples subjected to dynamic treatments was also higher after 120 days storage plus 7 days at 20°C compared with apples stored in RA or static CA. No differences in firmness, titratable acidity or soluble solids content were observed between apples stored in 1 kPa O2 and the dynamic treatments. Firmness and titratable acidity were maintained better by dynamic treatments compared with static atmospheres containing > 1 kPa O2.

Free access

Effects of artificial ultraviolet-visible light and methyl jasmonate (MJ) treatment on `Fuji' apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] fruit peel anthocyanin, phenolic, carotenoid, and chlorophyll production were examined using tristimulus color analysis and reverse-phase high performance liquid chromatography. Anthocyanin synthesis was enhanced by light and MJ treatment. Chlorogenic acid and most cyanidin, quercetin, and phloretin glycosides increased with MJ treatment concentration. Light alone also promoted increased production of most of these compounds. Production of catechin, (-)epicatechin, quercetin, and quercetrin was not enhanced by either light or MJ treatment. Light and MJ enhanced ß-carotene and chlorophyll b, synthesis but not xanthophyll or chlorophyll a synthesis. The chlorophyll a/b ratio decreased with MJ dosage. Results suggest MJ may provide a viable means of enhancing apple fruit coloration and other photoprotective mechanisms. Chemical name used: methyl 3-oxo-2-(2-pentenyl)cyclopentane-1-acetate (methyl jasmonate).

Free access