Search Results
You are looking at 1 - 4 of 4 items for :
- Author or Editor: J.M Kemble x
- HortTechnology x
Although the effect of various N fertilizers on tomato yield and quality has been previously examined, much of this research was conducted in hydroponic or green-house studies. The objective of this research was to examine the effect of N fertilizer sources (ammonium nitrate (NH4NO3), potassium nitrate (KNO3), urea (CO(NH2)2), urea ammonium nitrate (UAN), and calcium nitrate (Ca(NO3)2) on tomato (Lycopersicon esculentum Mill.) growth, yield, and fruit quality. The 2-year experiment was conducted using black plastic mulch covered raised beds with drip fertigation. A total of 180 lb acre (202 Kg·ha−1) N was applied with each N source, with 25% applied preplant and premulch and remaining N applied as 10 weekly applications of 13.5 lb/acre (15.2 kg·ha−1). If an N source contained Ca or K, that amount was applied to all other N sources (preplant and fertigated) as potassium chloride (KCl) or calcium chloride (CaCl2). Collected data included plant height, leaf N concentration, and yield. Different N sources had varying and inconsistent effects on fruit yield and quality. Although plant height and stem diameter from UAN treatments were always smaller than those from other N sources, this effect did not extrapolate to decreased total marketable yield. Differences in N concentration of tomato leaf tissue were not consistent with N source and were not related to differences in tomato yield. There were few differences in yield and quality of nonmarketable fruit due to N source. In this one-site, 2-year study, it appears that any of the N sources studied would be suitable for tomato production, if price of N fertilizer materials are the same.
The use of composted waste materials as an alternative source of potting media has received much interest in recent years. Our objective was to incorporate composted, ground poultry litter into a standard greenhouse potting mix, and evaluate the effect of the poultry litter on vegetable transplants grown in the greenhouse and transplanted to the field. Treatments consisted of potting mixes of 100% potting media or 50/50 media/poultry litter. Collards (Brassica oleracea L. var. acephala DC.), broccoli (Brassica oleracea var. italica Plenck.), cabbage (Brassica oleracea L. var. capitata L.) and three tomato (Lycopersicon esculentum Mill.) cultivars were utilized as test crops. A nutrient solution treatment of 8 oz of 8N-11P-7K fertilizer or 8 oz of water was added when transplants were set in the field. Plant weight and nitrogen content were measured weekly during the greenhouse production stage, and final crop yield was recorded at harvest. Any effect from the inclusion of poultry litter in the potting media on cole crop (collards, broccoli, cabbage) transplant dry weight had disappeared by the fourth week of sampling in the greenhouse, and final yield of cole crops was unaffected by either type of potting mix or presence or absence of starter nutrient solution. Dry weight of tomato transplants was not affected by type of potting media. Differences in tomato yield due to type of potting mix were observed, as plots with transplants grown in the 50/50 mix had greater nonmarketable yields (`Bonnie' and `Big Boy'). Yield of `Big Boy' tomato was increased by the addition of starter nutrient solution. It appears that composted, uniformly prepared waste materials are suitable for production of vegetable transplants.
Multidisciplinary integrated pest management (IPM) teams from seven states in the southeastern United States (Alabama, North Florida, Georgia, Kentucky, North Carolina, South Carolina, and Tennessee) met to develop standards for adopting IPM in fresh-market tomato (Lycopersicon esculentum L.) production. Teams were composed of growers, private consultants, extension personnel, and faculty. IPM practices available for use on tomatoes in the southeastern United States were identified and a survey to assess the current level of adoption of IPM practices was developed. The survey also allowed growers to identify insect, disease, and production problems; beneficial technology and research developments; and other information relevant to IPM adoption. In northern Florida, Georgia, Kentucky, North Carolina, and South Carolina, IPM adoption by tomato growers was classified as medium or high on >75% of the fresh-market tomato acreage surveyed. It appears these states may have met the federal mandate for IPM adoption. Tomato producers listed early blight, late blight, bacterial spot, bacterial speck, and bacterial wilt as the main disease problems; tomato fruit worm, thrips, and aphids as the primary insect problems; and poor weather conditions, government regulation, and labor as their primary production problems. Twenty-six percent of the producers throughout the region felt that the development of insect- and disease-resistant varieties would be most helpful to increase production.
The Alabama Tomato Integrated Pest Management (IPM) Program was demonstrated during two growing seasons in southeastern Alabama. The program consisted of a twice-a-week insect/disease scouting service combined with a weather-timed spray program (TOM-CAST). On average, growers made four fewer insecticide applications and three to four fewer fungicide applications when following the IPM program compared to their conventional, calendar-based program. There was no apparent reduction in yield when following the IPM program. An economic analysis indicated that growers following the IPM program saved an average of $54.36/acre ($134.32/ha).