Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: J.H. Hill x
  • HortTechnology x
Clear All Modify Search

Water is pervasively involved in the life cycle of seeds. Water in the environment, either as a vapor or liquid, directly affects seed moisture status. This article is devoted to the study of seed moisture status in postharvest events. Two topics are discussed: imbibitional chilling injury and upgrading of primed seeds. Imbibitional chilling injury is a physiological disorder that occurs in large-seeded legumes as well as other important agronomic seeds. Imbibitional chilling injury has been shown to reduce the survival rate of seedlings. Surviving seedlings have less emergence force per seedling and require a longer period to generate maximum force. Rapid hydration has been shown to induce injury at a particular seed moisture level. Methods of regulating the hydration rate were explored to alleviate chilling injury in snap beans (Phaseolus vulgaris L.) Plant breeding lines with the semihard seed characteristic delayed the onset of imbibition when the initial moisture level was low (8%). Coating seeds with polymeric films to complement the permeable testa retarded the imbibition rates. Both approaches alleviated chilling injury and improved seedling establishment under stressful conditions. Seed priming is a technique for elevation of seed moisture content before sowing. Primed seeds generally emerge more quickly than nonprimed seeds, especially under stressful environmental conditions. An additional merit of this technique is that it gives access to seeds with elevated moisture content. Various approaches may be employed to condition seeds after priming, but before redesiccation. Discarding the low-density fractions of primed tomato and lettuce seeds improved the percentage of germination compared with nonprimed seeds. Physiological mechanisms are presented to explain the association of density with seed viability in lettuce (Lactuca sativa L.).

Full access

Short-day onion (Allium cepa) variety trials were conducted in southeastern Georgia from 2000–03. Data collected and evaluated included total yield, graded yield, harvest date, number of seedstems, number of doubles, number of onion centers, bulb shape, disease incidence, bulb pungency, and storability in controlled atmosphere (CA) storage. Fifty-eight varieties were evaluated in the trials with 10 varieties appearing in all 4 years. Twenty-nine varieties appeared only once in the trials. Eight varieties had jumbo yields (≥3-inch diameter) that were not significantly different from the greatest jumbo yielding variety in 2 of the 4 years of testing and included `Century', `EX 19013', `Georgia Boy', `Mr. Buck', `Sapelo Sweet', `Savannah Sweet', `Sweet Vidalia', and `WI-609'. Early season varieties were strongly daylength dependent with foliar lodging occuring early and uniformly. Late season varieties were more prone to bacterial infection particularly if postharvest heat curing was employed. Although significant differences between varieties for seedstems (flower formation) and bulb doubling occurred almost every year, environmental conditions were an important part of their development. Five varieties had seedstems in 2 of the 3 years seedstems were prevalent that did not differ from the greatest number of seedstems for that year and included `Cyclops', `Georgia Boy', `Mr. Buck', `Pegasus', and `SSC 6372 F1'. `Sapelo Sweet' and `Sweet Advantage' had more than 5% bulb doubling in 3 years of the trials. Pungency as measured by pyruvate analysis ranged from 1.1 to 5.4 μmol·g–1 fresh weight (FW) over the 4 years of trials. There were nine varieties that were, for 2 years or more, among the greatest in percent marketable onions after 4.5 months of CA storage: `Georgia Boy', `Granex 1035', `Granex 33', `Ohoopee Sweet', `Sapelo Sweet', `Savannah Sweet', `Sweet Melissa', `Sweet Melody', and `SRO 1000'.

Full access