Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: J. Fang x
  • HortScience x
Clear All Modify Search
Authors: , , , and

We used amplified fragment length polymorphism (AFLP) markers to analyze 14 fruiting mei cultivars from China and Japan. The levels of polymorphism and genetic relationship among cultivars were studied using two types of AFLP primer combinations [EcoR I + Mse I (E+M) and EcoR I + Taq I (E+T)] and the combined data from both types of primer combinations (E+M+T). The polymorphism among the cultivars was 57.92% based on E+M primers and 63.04% based on E+T primers. All three dendrograms generated by the three sets of data showed similar relationships among the fruiting mei cultivars. The corresponding main clusters contained the same cultivars and the subgroups correlated closely with the known geographic origins of the cultivars.

Free access

Plant tissue culture can induce a variety of genetic and epigenetic changes in regenerated plantlets, a phenomenon known as somaclonal variation. Such variation has been widely used in the ornamental foliage plant industry as a source for selection of new cultivars. In ornamental aroids alone, at least 63 somaclonal-derived cultivars have been released. In addition to morphological differences, many somaclonal aroid cultivars can be distinguished by amplified fragment length polymorphism (AFLP) analysis. However, a few cultivars have no detectable polymorphisms with their parents or close relatives by AFLP fingerprints. It is postulated that DNA methylation may be involved in the morphological changes of these cultivars. In this study, methylation-sensitive amplification polymorphism (MSAP) technique was used to study DNA methylation in selected somaclonal cultivars of Alocasia, Aglaonema, Anthurium, Dieffenbachia, Philodendron, and Syngonium. Results showed that polymorphisms were detected in the somaclonal cultivars, suggesting that DNA methylation polymorphisms may associate with tissue culture-induced mutation in ornamental aroids. This is the first study of methylation variation in somaclonal variants of ornamental foliage plants. The results clearly demonstrate that the MSAP technique is highly efficient in detecting DNA methylation events in somaclonal-derived cultivars.

Free access