Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: J. A. Davies x
  • HortScience x
Clear All Modify Search

The influence of the mycorrhizal fungus Glomus intraradices and reduced levels of G. intraradices treated with the isoflavonoid formononetin was tested on growth and gas exchange of container-grown potato plants. Tissue culture-produced minitubers of Solanum tuberosum cv. Russet Norkotah and Russet Norkotah selection TX112 were subjected to four treatments: 1) G. intraradices at 750 propagules per container, 2) G. intraradices at 376 propagules per container, 3) G. intraradices at 376 propagules per container treated with the isoflavonoid formononetin, and 4) noncolonized plants. Plants were grown under glasshouse conditions in 1500-mL containers containing a sterilized sand: sandy loam soil, and fertilized with Long Ashton nutrient solution modified to supply phosphorus at 11 ug P/mL. The experiment was initiated on 4 May 1998 and terminated on 27 Aug. 1998, during which the plants were exposed to adverse high temperatures (mean high: 30.7 °C). Both cultivars responded similarly to mycorrhizal treatments. Formononetin enhanced growth of myocorrhizal plants and increased total colonization, arbuscule, and hyphae development. Only formononetin-treated mycorrhizal plants had increased shoot growth. Net photosynthesis and stomatal conductance were generally greatest with reduced levels of mycorrhiza and formononetin treated mycorrhizal plants.

Free access

Tubers of Sandersonia aurantiaca Hook. were soaked in 1000 mg·L-1 GA3, 20 mg·L-1 uniconazole, 200 mg·L-1 benzyladenine, or water for 2 hours and then sprouted at 12, 18, or 24 °C. The effects of these treatments on flower stem quality were then determined at forcing temperatures of 18, 24, or 30 °C. Stem length increased with sprouting temperature only at a forcing temperature of 18 °C. Floret numbers increased with sprouting temperature at all forcing temperatures, but the effect was greatest at the 18 °C forcing temperature. The 12 °C sprouting treatment reduced floret numbers at all forcing temperatures. Soaking tubers in GA3 increased stem length but drastically reduced floret numbers, while soaking in uniconazole reduced stem length but had no significant effect on floret numbers. Soaking in BA strongly promoted branching, which resulted in large increases (>30%) in floret numbers per stem with little change in stem length. Of the three growth regulators, only BA was effective in improving cut flower stem quality. Chemical names used: gibberellic acid (GA3); (E)-(+)-(S)-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)-pent-1-ene-3 -ol (uniconazole); N 6-benzylamino purine (benzyladenine; BA).

Free access