Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Júlia Halász x
- HortScience x
Diploid japanese plum (Prunus salicina Lindl.) cultivars are commonly self-incompatible. To date, 14 incompatibility alleles (S-alleles) have been identified and labeled with alphabetical (S a-S n) and 5 with numeric codes (S 1, S 3-S 6). We applied polymerase chain reaction amplification of the S-RNase alleles with degenerate and allele-specific primers in 10 japanese plum cultivars and two pluots of unknown incompatibility alleles. Besides DNA sequencing, an additional method for the exact length determination of the first intron region was used for the first time for S-genotype japanese plums. The S 3-allele was shown to correspond to S k in the alphabetic nomenclature, S 4 to S c, S 5 to S e, and S 6 to S f. The S 5-allele-specific primer can be used as a reliable marker for self-compatibility in japanese plum. ‘Black Amber’, ‘October Sun’, ‘TC Sun’, and ‘Super Giant’ share the S b S c genotype, which was confirmed by test crosses. These cultivars belong to the widest incompatibility group currently known in japanese plum. An additional incompatibility group (S c S h) was established, including ‘Green Sun’ and ‘Queen Rosa’, a cultivar formerly known as a universal donor. By incorporating all previous and recent results, a table was assembled including 49 cultivars assigned to I–VII incompatibility groups, to the self-compatible group and to the group O of unique genotypes. These data may considerably contribute to further growing and breeding activities.
The hexaploid European plum (Prunus domestica L.) is an economically important fruit species with limited information on its genetic structure. Our objective was to fingerprint 55 cultivars using seven simple sequence repeat (SSR) markers to estimate the polymorphism level and determine allelic variation and genetic relationships among local and international cultivars. The primer pairs amplified a total of 135 alleles ranging from six to 27 alleles per locus, displaying high polymorphism. All genotypes were clearly distinguished with the seven SSRs used in this study. In a neighbor-joining cluster analysis, cultivars belonging to the same species did not group together. Foreign modern cultivars clustered together, and Hungarian landraces positioned distantly from those. STRUCTURE analysis indicated three genetically distinct groups of the studied genotypes. Each cluster of Hungarian landrace cultivars received strong bootstrap support (89% to 100%). Most genotypes kept under identical name showed different DNA fingerprints. A principal component analysis (PCA) confirmed the information provided by the dendrogram and clarified the origin of ʻFehérszilva’. Our results confirmed the potential of the application of SSR markers in plum breeding.