Search Results
You are looking at 1 - 10 of 10 items for :
- Author or Editor: Hongwen Huang x
- Journal of the American Society for Horticultural Science x
Forty-eight kiwifruit cultivars and selections, representing more than 90% of total world kiwifruit production, were investigated using nine SSR markers to establish genetic identities, and evaluate genetic diversity and relatedness. These nine SSRs were polymorphic and a total of 213 alleles were detected, resulting in a mean number of 23.7 alleles per locus, ranging from nine to 38 alleles. One hundred and thirty-three alleles were found to be common to both A. chinensis and A. deliciosa, while 33 and 36 were specific to A. chinensis and A. deliciosa, respectively. In addition, 34 alleles were specific to one single genotype and provided a set of valuable alleles for cultivar identification. A single SSR locus UDK 96-414 could differentiate all 48 genotypes except two presumable clones. Mean number of alleles per locus (A), percentage of polymorphic loci (P), and direct count heterozygosity (Ho) assessed for each genotype over all loci revealed considerable differences among these 48 genotypes. On average, A = 2.6, P = 89.4% and Ho = 0.546 were found in A. chinensis cultivars, while A = 3.5, P = 97.0% and Ho = 0.671 in A. deliciosa cultivars. Consensus fingerprint profiling using SSR markers is a useful and reliable method for establishing genetic identities of kiwifruit cultivars and selections. It also improves evaluation effectiveness of genetic diversity and relatedness compared to RAPD markers.
Genetic variation among nine populations of Ozark chinkapin [Castanea pumila (L.) Mill. var. ozarkensis (Ashe) Tucker], threatened by their susceptibility to chestnut blight (Cryphonectria parasitica (Murrill) Barr), was investigated. Population genetic parameters estimated from isozyme variation suggest the populations have a higher genetic diversity (He = 0.227) than populations of the other Castanea Mill. species on the North American continent, the American chestnut (C. dentata (Marsh.) Borkh.) High levels of heterozygosity were detected within the populations, but nonsignificant differences in genetic diversity were observed among the different populations. Principal component analysis based on isozyme allele frequencies or randomly amplified polymorphic DNA phenotype frequencies showed clustering of the same populations. Populations with high levels of genetic diversity and unusual alleles should be the focal point of conservation biologists for capturing much of the genetic variation of the species.
Allozyme polymorphism in chestnut (Castanea) species was investigated using isoelectric focusing in thin-layer polyacrylamide slab gels. Genetic analysis of the progenies of intraspecific crosses and interspecific F2s and backcrosses (BC1s) allowed the verification of 11 polymorphic isozyme loci from 11 enzyme systems. The following loci were defined: Acp, Adh, Est-1, Est-2, Est-5, Me, Prx-1, Prx-2, Prx-3, Skd-3, and Skd-4. All polymorphic loci behaved as single-locus Mendelian genes. Skd showed unique species specificity. Skd-1 and Skd-2 were unique to the American chestnut (C. dentata Borkh.) and the European chestnut (C. sativa Mill.), whereas Skd-3 and Skd-4 were unique to the Chinese chestnut (C. mollissima Bl.) and the Japanese chestnut (C. crenata Sieb.). Linkage analysis revealed linkage for three pairs of loci: Skd-3/Skd-4, Est-1/Est-2, and Est-5/Prx-1. The single-tree progeny method was used successfully for isozyme genetic analysis. Forty-seven chestnut cultivars in six chestnut species were characterized using 12 isozyme loci and can be unambiguously identified by 12 multi-locus genotypes. The interspecific and geographic relationships among species were also discussed.
Thirty-four extant pawpaw [Asimina triloba (L.) Dunal] cultivars and advanced selections representing a large portion of the gene pool of cultivated pawpaws were investigated using 71 randomly amplified polymorphic DNA (RAPD) markers to establish genetic identities and evaluate genetic relatedness. All 34 cultivated pawpaws were uniquely identified by as few as 14 loci of eight primers. Genetic diversity of the existing gene pool of cultivated pawpaws, as estimated by Nei's gene diversity (He), was similar to that of wild pawpaw populations. The genetic relatedness among the cultivated pawpaws examined by UPGMA cluster analysis separated 34 cultivars and selections into two distinct clusters, a cluster of PPF (The PawPaw Foundation) selections and a cluster including a majority of the extant cultivars selected from the wild and their derived selections. The results are in general agreement with the known selection history and pedigree information available. The consensus fingerprint profile using the genetically defined RAPD markers is a useful and reliable method for establishing the genetic identities of the pawpaw cultivars and advanced selections. This also proved to be an improved discriminating tool over isozyme markers for the assessment of genetic diversity and relatedness. RAPD profiling of data presented in this study provides a useful reference for germplasm curators engaged in making decisions of sampling strategies, germplasm management and for breeders deciding which parents to select for future breeding efforts.
The utility of isozyme phenotypes for identifying and determining genetic variation in pawpaw cultivars was studied using isoelectric focusing in thin-layer polyacrylamide gels. Based on a sample of 32 clones (cultivars and advanced selections) and 23 enzyme systems, 7 enzymes were found to be polymorphic, involving 9 polymorphic loci [acid phosphatase (ACP), dihydrolipoamide dehydrogenase (DDH), malic enzyme (ME), phosphoglucoisomerase (PGI), phosphoglucomutase (PGM), peroxidase (PRX), and shikimate dehydrogenase (SKD)]. Altogether these 9 loci and 32 clones yielded 28 multi-locus isozymic phenotypes useful for cultivar identification; 24 of the 32 clones were uniquely identified. The allozyme variation in these clones has the average of other long-lived woody perennials of widespread geographic range in temperate regions with insect-pollinated outcrossing breeding systems, secondary asexual reproduction, and animal-dispersed seed. Genetic differentiation among these pawpaw clones, measured by Nei's distance, D, was substantial: 496 pairwise comparisons of genetic distance among the 32 clones indicated that they differed on average of D = 0.068 ± 0.04 and ranged from 0 to 0.188. Cluster analysis (UPGMA) produced a most likely division of the 32 clones into 7 groups; however, these groups did not conform to known pedigree relations. Additional polymorphic enzymes are needed for accurate allozyme-based genetic discrimination.
As a new National Clonal Germplasm Repository for Asimina species at Kentucky State University (KSU), of major concern to us is the genetic variation within our germplasm collection. The present study investigated the extent of genetic diversity for the pawpaw germplasm in our collection and the geographical pattern of genetic diversity among populations using isozyme markers. Allozyme diversity was high in Asimina triloba (L.) Dunal (Annonaceae) collected from all nine different states, as is typical for temperate woody perennial, widespread and outcrossing plant species. Averaged across populations, mean number of alleles per locus (A), percent polymorphic loci (P), effective number of alleles per locus (Ae), and expected heterozygosity (He) were 1.54, 43.5, 1.209, and 0.172, respectively. Significant deviations from Hardy-Weinberg equilibrium were found in nine populations at an average of 4.8 loci. Observed heterozygosity was higher than expected. Partitioning of genetic diversity showed that 88.2% resided within populations. The proportion of genetic diversity among populations (Gst = 0.118; FST = 0.085) was either lower than or within the range of those species with similar ecological and life-history traits. The mean genetic identity among populations was high (I = 0.988). An analysis using UPGMA clustered most populations as one major group, with the southernmost (Georgia) and the westernmost (Illinois) populations readily separated from the main group. The relationships discovered by principal component analysis (PCA) were similar to those revealed by UPGMA. In addition, PCA separated the northernmost population (New York) from the major group. Sampling strategies for future germplasm collection of A. triloba are also discussed.
Twelve, 10-base primers amplified a total of 20 intense and easily scorable polymorphic bands in an interspecific cross of PPF1-5 pawpaw [Asimina triloba (L.) Dunal.] × RET (Asimina reticulata Shuttlew.). In this cross, all bands scored were present in, and inherited from, the A. triloba parent PPF1-5. Nineteen of the 20 bands were found to segregate as expected (1:1 or 3:1) based on chi-square goodness-of-fit tests, and were subsequently used to evaluate genetic diversity in populations of A. triloba collected from six states (Georgia, Illinois, Indiana, Maryland, New York, and West Virginia) within its natural range. Analysis of genetic diversity of the populations revealed that the mean number of alleles per locus was A = 1.64, percent polymorphic loci was P = 64, and expected heterozygosity was He = 0.25. No significant differences were found among populations for any of the polymorphic indices. Partitioning of the population genetic diversity showed that the average genetic diversity within populations was Hs = 0.26, accounting for 72% of the total genetic diversity. Genetic diversity among populations was Dst = 0.10, accounting for 28% of the total genetic diversity. Nei's genetic identity and distance showed a high mean identity of 0.86 between populations. Genetic relationships among the populations examined by unweighted pair-group mean clustering analysis separated the six populations into two primary clusters: one composed of Georgia, Maryland, and New York, and the other composed of Illinois, Indiana, and West Virginia. The Georgia and Indiana populations were further separated from the other populations within each group. This study provides additional evidence that marginal populations within the natural range of A. triloba should be included in future collection efforts to capture most of the rare and local alleles responsible for this differentiation.
Pawpaw (Asimina triloba) produces the largest fruit native to the United States. Six linkage groups were identified for A. triloba using the interspecific cross [PPF1-5 (A. triloba) × RET (A. reticulata Shuttlw. ex Chapman)], covering 206 centimorgans (cM). A total of 134 dominant amplification fragment length polymorphism (AFLP) markers (37 polymorphic and 97 monomorphic) were employed for estimating the genetic diversity of eight wild populations and 31 cultivars and advanced selections. For the wild populations, the percentage of polymorphic loci over all populations was 28.1% for dominant markers and Nei's genetic diversity (He) were 0.077 estimated by 134 dominant markers. Genetic diversity and the percentage of polymorphic loci estimated using only polymorphic dominant AFLPs were 0.245 and 79%, respectively, which are comparable with other plant species having the same characteristics. Estimated genetic diversity within populations accounted for 81.3% of the total genetic diversity. For cultivars and advanced selections, genetic diversity estimated by 134 dominant markers was similar to that of wild pawpaw populations (He = 0.071). Thirty-one cultivars and advanced selections were delineated by as few as nine polymorphic AFLP dominant loci. Genetic relationships among wild populations, cultivars and advanced selections were further examined by unweighted pair group method with arithmetic mean (UPGMA) of Nei's unbiased genetic distance. The genetic diversity estimated for wild populations using the clustered polymorphic markers was lower than the result estimated using the nonclustered polymorphic markers. Therefore, this study indicates that the number of sampled genomic regions, instead of the number of markers, plays an important role for the genetic diversity estimates.
Phylogenetic relationships within the Actinidia were investigated using randomly amplified polymorphic DNA (RAPD) markers. DNAs from 40 taxa, including 31 species encompassing all four sections and four series of the traditional subdivisions within the genus, were amplified using 22 preselected 10-mer oligonucleotide primers. A total 204 DNA bands were scored across the 40 taxa, of which 188 (92%) were polymorphic. A wide range of genetic similarity was observed among the taxa (0.13 to 0.61). The average similarity between varieties of the same species was 0.54, and between different species was 0.28, respectively. Although the phylogenetic analysis revealed a clear indication that section Leiocarpae was a monophyletic group, subdivisions of the other three traditional sections were poorly supported. The UPGMA phenogram showed that the majority of the species clustered into geographic subgroups in accordance with their natural distribution (the Yangtzi River, southeastern China, southern China and southwestern China). The intrageneric subdivisions of Actinidia appeared to be difficult, but some subdivisions could be explained by the geographic distribution of the species, particularly for species of Liang's sections of Maculatae and Stellatae. The phylogenetic relationships among several species with previous taxonomic uncertainty are also discussed on the basis of the RAPD data. The results of this study supplement our previous understanding of the Actinidia taxonomy based solely on morphological characters.
Graft compatibility was investigated for 15 Chinese chestnut (Castanea mollissima Bl.) cultivars, nine American chestnut [C. dentata (Marsh.) Borkh.] selections, six Japanese chestnut (C. crenata Sieb.) cultivars, and two putative Japanese hybrids on two known rootstocks of Chinese chestnut. Intraspecific grafting of Chinese chestnut resulted in 80% success after two growing seasons. An unusual anatomical structure of the chestnut stem had a significant effect on graft success. The phloem fiber bundles related to graft failure are described in the study. Interspecific grafts of seven American and five Japanese chestnut selections resulted in ≥70% success. The putative Japanese hybrids had a significantly lower success rate (<50%) regardless of rootstocks. A marked graft incompatibility was found in one Japanese/Chinese and two American/Chinese combinations. Graft incompatibility related to morphological abnormalities at the graft union was also observed in interspecific grafts. Comparisons of cambial isoperoxidase isozymes between successful and unsuccessful grafts did not support the hypothesis that peroxidase isozymes are indicators of rootstock-scion compatibility. The results suggest that genetic incompatibility is not a major cause of graft failure in Chinese chestnut.