Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Hongmei Li x
Clear All Modify Search

Leaf stomata are the main channels for water loss of plants including cut flowers. In this study, we investigated the organographic distribution, morphological characteristics, light–dark response, and water loss contribution of stomata in cut carnations (Dianthus caryophyllus L. ‘Master’), which are prone to typical water deficits despite a few and small leaves. Stomata were observed in the upper and lower leaf epidermis, stem surface, abaxial bract epidermis, and abaxial sepal epidermis. Stomatal density (SD) on the stem surface was the highest and significantly greater than that on the upper and lower leaf and abaxial bract epidermis. The sepal epidermis had the lowest SD and the smallest stomata whereas the upper leaf epidermis had the largest stomata. Changes in the water loss rate increased in the light and decreased in the dark in both intact and leaves-removed cut carnations. The water loss rate of the former was greater than that of the latter. However, the water loss rate for the stem-only cut carnations had weak change rhythms and was much lower than that for the intact and leaves-removed cut carnations. These findings demonstrate the differential contributions of stomata in leaves, stems, and floral organs to water loss, and help to elucidate further the mechanism underlying postharvest water deficit in cut carnations.

Open Access

In studying the postharvest water relations of cut flowers, researchers aim to determine rates of water uptake and water loss along with changes in fresh weight. An automatic apparatus was devised for continuous monitoring of these indices. The novel apparatus consists of two balances automatically recording mass at a relatively high data acquisition rate (min−1), a personal computer, two containers, and plastic tubing. The apparatus is accurate, labor-saving, and real-time. It enabled dynamic synchronous recording of water uptake as well as fresh weight of the cut flower stem, from which precise water uptake loss rates during vase life can be accurately determined. Rates of water uptake and water loss of individual cut rose (Rosa hybrida cv. Movie Star) stems were measured using the apparatus under alternating 12-h light and dark periods. Both water uptake and water loss rates fluctuated with the light to dark shift over 120 h of observation. Stem fresh weight increased rapidly over the first 40 h of vase period and decreased gradually thereafter. Cut lily (Lilium hybrida cv. Yellow Overlord) stems showed similar trends in water uptake and water loss rate to cut rose stems. The accuracy and sensitivity of the new apparatus was validated by comparison with manual weighing using a balance at 2-h intervals under alternating 12-h light and dark periods over 108 h. The apparatus described here constitutes a suitable method for direct measurement of water uptake and fresh weight, including capturing relatively rapid water balance responses to changes in the postharvest environment.

Free access

Stony hard (SH) peach (Prunus persica) fruits produce no ethylene and clingstone-type SH peaches have a crispy flesh texture; however, freestone-type SH peach fruits ripen to a soft, mealy state. During this study, we compared and analyzed changes in the microstructure, cell wall polysaccharides, and candidate cell wall-related genes of freestone-type SH ‘Zhongtao 14’ (‘CP14’), ‘Zhongtao White Jade 2’ (‘CPWJ2’), clingstone-type SH ‘Zhongtao 13’ (‘CP13’), and ‘Zhongtao 9’ (‘CP9’) during fruit ripening. The parenchyma cells of mealy freestone-type SH peaches became detached, were single, dried, and irregularly arranged, and remained intact in comparison with the nonmealy clingstone-type SH peaches. Methyl-esterified homogalacturonan was strongly immunolabeled in the cell wall of clingstone SH peaches; however, nonmethylated homogalacturonan was weakly immunolabeled in freestone SH peaches. A transcriptome analysis was performed to investigate the molecular mechanism of the mealiness process. A principal component analysis indicated that ‘CP14’ S4 III (mealy) could be distinguished from the samples of ‘CP13’ (S4 I, S4 II, S4 III) and ‘CP14’ (S4 I, S4 II). The highly coexpressed gene modules linked with firmness were found using a weighted gene coexpression network analysis; 189 upregulated genes and 817 downregulated genes were identified. Six upregulated cell wall-related genes (PpPG1, PpPG2, PpAGP1, PpAGP2, PpEXT1, and PpEXP1) and one downregulated cell wall-related gene (PpXET2) were involved in the mealiness process during freestone-type SH fruit ripening. These findings will improve our understanding of the relationship between clingstone, freestone, and stony hard fruits and lay the foundation for further exploration of the mechanisms underlying the softening of peach fruits.

Open Access