Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Gvozden Dumičić x
  • HortScience x
Clear All Modify Search

Suggested watermelon planting densities and N rates vary on a large scale, indicating that there is insufficient knowledge about their effects. Therefore, the objective of this study was to evaluate the effects of N rate and planting density on growth, yield and quality of watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai] grown on black polyethylene mulch. The field experiments with `Crimson Sweet' watermelon were conducted in two climatologically different growing regions. The treatments were factorial combinations of three in-row plant spacings (0.5, 1.0, and 1.5 m) and three N rates (115, 195, and 275 kg·ha-1). Part of the N (35 kg·ha-1) was applied preplant and the remainder was fertigated. Vine length increased linearly up to 7 weeks after planting (WAP) as N rate increased from 115 to 275 kg·ha-1, and up to 9 WAP as plant spacing increased from 0.5 to 1.5 m. Total and marketable yields per ha or per plant did not increase with N rates above 115 kg·ha-1. Average fruit weight and fruit size distribution were generally unaffected by N rate. Leaf N concentration increased as N rate increased, although leaf N concentrations at the lowest N rate (115 kg·ha-1) even at 9 WAP were relatively high (43.3 to 47.3 g·kg-1). Total and marketable yields per ha were linearly decreased with an increase in plant spacing from 0.5 to 1.5 m, and the same was noticed with the total and marketable number of fruit per ha. With increased plant spacing average fruit weight increased and fruit size distribution shifted to larger categories.

Free access

Globe artichoke is a native crop of the Mediterranean region with about 80% worldwide production. It is estimated that about 3,000 ha are grown in the U.S., mostly in California. Artichoke crop can be grown as a perennial, by vegetative cuttings, or as annual by seeds. Crop production can be limited by freezing winter temperatures leading to irreversible plant damage or by high summer temperatures causing poor head quality. Successful artichokes production, particularly in areas with constraining climatic conditions, requires proper selection of cultivars and planting dates. Cultivars with low vernalization requirements are more prone to a short growing season. The application of GA3 to overcome the lack of low temperatures and fulfill the vernalization requirements of early cultivars is well known. The goal of this multi-year project is to select production strategies contributing to earliness, extension of harvesting period, and improved yield and head quality under a variety of environmental conditions in Croatia and Texas. Selecting cultivars with different maturity groups and planting dates enabled harvesting period from autumn to late spring depending on locations. When GA3 was applied (12.5 to 125 ppm) on a naturally vernalized crop from autumn planting, early yield was substantially increased without affecting earliness. Conversely, application of GA3 (30 or 45 ppm) on nonvernalized plants established during late spring or summer was necessary for fall harvest in the Croatian locations. Head quality evaluated as head weight and size, or crude protein and total fiber concentration, progressively decreased during late spring harvest in Texas. Shifting the harvesting period towards early spring may be essential for improving head quality and for increasing the market share. To achieve adequate yields, longer harvesting period, and superior head quality, it is necessary to develop and adjust cultural practices for the specific growing area.

Free access

Pomegranate (Punica granatum L.) is a nonclimacteric fruit sold fresh as whole fruit or arils (fleshy seeds). It is also used for the production of juice, wine, and syrup. Pomegranate is popular due to its numerous health benefits. In the United States, it is grown primarily in California and other semi-arid regions, with Wonderful being the most widely grown cultivar. However, preliminary research has shown that ‘Wonderful’ produces low yields in Georgia, thus indicating the need to identify cultivars better suited for warm and humid conditions, such as those of the southeastern United States. The objective of this study was to determine the physical and chemical quality attributes of pomegranate cultivars grown in Georgia. Pomegranate fruit from 40 cultivars were harvested during 2012 to 2017. Individual fruit weight varied from 124 g for ‘Utah Sweet’ to 631 g for ‘C1’. The total fruit weight percentage accounted for by fresh aril weight (aril fraction) ranged from 22% for ‘C8’ to 70% for ‘JC’. Individual aril weight ranged from 174 mg for ‘Utah Sweet’ to 638 mg for ‘Cloud’. Across cultivars, individual fruit weight increased linearly with the increasing number of arils. Aril color varied from white to deep red. The arils L* value ranged from 15.7 (dark arils) for ‘Crown Jewel’ to 46.1 (light arils) for ‘Utah Sweet’. The a* values ranged from 0.6 (white arils) for ‘Cloud’ to 20.5 (red arils) for ‘Crab’. The b* values ranged from 8.7 for ‘DJ Forry’ (from a store) to 62.5 for ‘R9’. The Chroma* values ranged from 13.4 for ‘Cloud’ to 24.3 for ‘Crab’. The hue° values ranged from 29.7 for ‘Wonderful’ (from a store) to 87.1 for ‘Cloud’. Rind color was related to the color of the arils; high a* values in the rind and arils were associated with the red color. The fruit juice content ranged from 174 mL·kg−1 fruit for ‘Utah Sweet’ to 638 mL·kg−1 fruit for ‘Cloud’. Cultivars varied from tart to sweet. The fruit soluble solids concentration (SSC) ranged from 10.8% for ‘Sin Pepe’ to 16.4% for ‘Crown Jewel’. Fruit titratable acid (TA) ranged from 0.27% for ‘Sin Pepe’ to 6.20% for ‘Utah Sweet’. The juice maturity index measured as the SSC/TA ratio ranged from 1.9 for ‘Utah Sweet’ to 39.5 for ‘Sin Pepe’. The juice total phenols (measured as gallic acid equivalents) ranged from 463 mg·L−1 for ‘JC’ to 2468 mg·L−1 for ‘Wonderful’ (Georgia). Trolox equivalent antioxidant capacity values of juice ranged from 10,001 µM for ‘King’ to 59,821 µM for ‘I11’. Cupric reducing antioxidant capacity values in juice ranged from 7471 µM for ‘Azadi’ to 20,576 µM for ‘Wonderful’ (Georgia). Juice total anthocyanins varied from 1.7 mg·L−1 for ‘R19’ to 50.0 mg·L−1 for ‘Wonderful’ (Georgia). Pomegranate cultivars showed large variability in physical and chemical attributes. Such pomegranate variability represents opportunities for breeding, for the retail market, and for the development of different products by the food industry.

Free access